K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a\ge b\ge1\\c\ge d\ge1\end{cases}}\)

Theo đề bài thì \(\hept{\begin{cases}a+b=cd\\ab=c+d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b\ge c\\ab\le2c\end{cases}}\)

\(\Rightarrow a+b\ge c\ge\frac{ab}{2}\)

\(\Rightarrow ab\le2\left(a+b\right)\le4a\)

\(\Rightarrow1\le b\le4\)

Tương tự ta cũng tìm được

\(1\le d\le4\)

Kết hợp lại rồi lập bảng chọn ra giá trị thỏa mãn là xong.

7 tháng 2 2018

hệ pt <=> ay = x-x = 0

                ax+y = 2

<=> ay = 0 

       ax+y = 2

<=> a=0 hoặc y=0

       ax+y = 2

+, Nếu a = 0 thì hệ pt <=> 0x = 0

                                         y = 2

=> hệ pt vô số nghiệm 

+, Nếu a khác 0 => y = 0 thì hệ pt 

<=> 0x = 0

       ax = 2

Để pt có nghiệm nguyên dương hay x thuộc N sao thì a thuộc N sao và a thuộc ước của 2

=> a thuộc {1;2}

Vậy ................

P/S : tham khảo xem đúng ko nha

7 tháng 2 2018

Dề sai ko bạn

13 tháng 2 2018

b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)

từ \(\left(2\right)\) ta có: \(y=2m-mx\)  \(\left(3\right)\)

thay (3) vào (1) ta được  \(x+m\left(2m-mx\right)=m+1\)

\(\Leftrightarrow x+2m^2-m^2x=m+1\)

\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)

\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)

\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\)  \(\left(4\right)\)

để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất  

\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

từ (4) ta có  \(x=\frac{m^2-1}{m^2-1}=1\)

từ (3) ta có: \(y=2m-m\)

\(y=m\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)

theo bài ra  \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)

\(\Leftrightarrow m\ge1\)

vậy....

13 tháng 2 2018

a) khi m = 2 hpt có dạng 

\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)

vậy....

2 tháng 3 2018

bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt

2 tháng 3 2018

Ko có bạn ơi :<

1 tháng 3 2020

c,  Ap dung cong thuc sau  

Dien h tam giac deu canh a = \(\frac{a^2\sqrt{3}}{4}\) (bn tu chung minh )

sau do tinh canh tam giac ABC theo R se duoc \(AB=\frac{\sqrt{3}}{2}R\) thay vao cong thuc tren la ra 

d, ban tu ve hinh nha

Ta co tu giac CHMF,MHIB noi tiep 

nen suy ra \(\widehat{CHF}=\widehat{CMF},\widehat{BHI}=\widehat{BMI}\) (1)

ma \(\widehat{MCF}=\widehat{MBI}\) (tu giac ABMC noi tiep) 

=> \(\widehat{CMF}=\widehat{BMI}\) phu 2 goc bang nhau (2)

tu (1),(2) => \(\widehat{CHF}=\widehat{BHI}\) => H,I,F thang hang

29 tháng 2 2020

khó thế =((((

\(a)\)\(\hept{\begin{cases}2x+3y=5\\x-4y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5-3y}{2}\\x=1+4y\end{cases}\Leftrightarrow}5-3y=2+8y\Leftrightarrow y=\frac{3}{11}}\)

\(\Rightarrow\)\(x=1+4y=1+4.\frac{3}{11}=\frac{23}{11}\)

\(b)\)\(\hept{\begin{cases}x+y=-2\\-2x-3y=9\end{cases}\Leftrightarrow\hept{\begin{cases}-x=y+2\\-x=\frac{9+3y}{2}\end{cases}\Leftrightarrow}2y+4=9+3y\Leftrightarrow y=-5}\)

\(\Rightarrow\)\(x=-y-2=-\left(-5\right)-2=3\)

...

1 tháng 4 2020

b) hệ phương trình có nghiệm thỏa mãn 3x-7y=19

=> x,y là nghiệm của hệ phương trình \(\hept{\begin{cases}x-3y=5\left(1\right)\\3x-7y=19\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow3x-9y=15\Leftrightarrow3x=15+9y\)

thay 3x=15+9y zô (4) ta đc

\(15+9y-7y=19\)

=>\(2y=4=>y=2\)

\(=>x-3.2=5=>x=11\)

thay x=11 , y=6 ta có

\(4.11+2=13.m-32\)

=> m=6

b)\(\hept{\begin{cases}x-3y=5\left(3\right)\\4x+y=13m-32\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow4x-12y=20\Leftrightarrow4x=20+12y\)

thay zô (4) , rồi làm biến đổi như câu a) nhá

xong => y=m-4

=> x=5+3y

=> x=5+3(m-4)=3m-7

\(\hept{\begin{cases}x>2\\y< 3\end{cases}\Leftrightarrow\hept{\begin{cases}3m-7>2\\m-4< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}m>3\\m< 7\end{cases}\Leftrightarrow}3< m< 7}\)

c) Thay x=3m-7 ; y=m-4 ta có

\(S=\left(3m-7\right)^2+6\left(m-4\right)+2030\)

\(=9m^2-42m+49+6m-24+2030\)

\(=9m^2-36m+2055=9m^2-2.3m.6+36+2019\)

\(=\left(3m-6\right)^2+2019\ge2019\forall m\)

dấu = xảy ra khi 3m-6=0 => m=2 

zậy ...