K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

tớ bít nè

28 tháng 4 2017

A>1/150+1/150+1/150+...+1/150(50 số 1/150)+1/200+1/200+1/20+...+1/200(50 số 1/200).

=>A>1/150*50+1/200*50.

=>A>1/3+1/4=7/12.

Vậy A>7/12(đpcm).

tk mk nha nay mk học bài này,chắc chắn.

-chúc ai tk mk học giỏi-

27 tháng 1 2016

ai tick mk với nào 

27 tháng 1 2016

bn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 7 2018

a )   Số lượng số của dãy số trên là : 

\(\left(200-101\right):1+1=100\) ( số ) 

Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau : 

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)

\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)

\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)

\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)

b )  Số lượng số dãy số trên là : 

\(\left(150-101\right):1+1=50\)( số ) 

Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)

\(\Rightarrowđpcm\)

12 tháng 5

Ta có: 𝐶=1101+1102+1103+...+1200

=(1101+1102+...+1120)+(1121+1122+1123+...+1150)+(1151+1152+1153+...+1180)+(1181+1182+1183+...+1200)

⇔𝐶>20⋅1120+30⋅1150+30⋅1180+20⋅1200

⇔𝐶>16+15+16+110=1930=76120

⇔𝐶>75120=58

hay 𝐶>58(đpcm)

 TỰ thay C=a nhA

20 tháng 11 2019

CÂU HỎI LÂU NHẤT

2 tháng 3 2021

Ta có:

\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\) (có 50 số hạng) 

⇔ \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{3}\)                   \(\left(1\right)\)

\(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\) (có 50 số hạng)

⇔ \(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{4}\)                    \(\left(2\right)\)

Từ (1) và (2), cộng vế theo vế. Ta được:

\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}+\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) 

⇒ \(ĐPCM\)

2 tháng 3 2021

Cậu nghĩ đâu mà hay vậy

17 tháng 6 2020

Số số hạng của A là:

(200-101):1+1=100(số)

Nếu ta nhóm A thành các nhóm,mỗi nhóm 50 số hạng ta được :

100:50=2(nhóm)

Ta có :

A=(1/101+1/102+...+1/150)+(1/151+1/152+1/153+...+1/200)

Vì 1/101<1/102<1/103<...<1/150 nên 1/101+1/102+...+1/150<1/150x50

1/151<1/152<1/153<...<1/200 nên 1/151+1/152+1/153+...+1/200<1/200x50

Từ 3 điều trên suy ra:

A<1/150x50+1/200x50

A<1/3+1/4

A<7/12

vậy A<7/12

❤~~~ HỌC TỐT~~~❤Đặng Khánh Duy