K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Ta xét hiệu \(\frac{x^2+y^2+z^2}{3}-\left(\frac{x+y+z}{3}\right)^2\)

\(=\frac{1}{9}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (Đúng)

Vậy \(\frac{x^2+y^2+z^2}{3}\ge\left(\frac{x+y+z}{3}\right)^2\) (Đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

24 tháng 12 2017
ghhjkkkk
9 tháng 9 2020

Động não tí đi Quỳnh, a thấy bài này cũng không khó.

9 tháng 9 2020

Bài dễ mừ, có phải Croatia thật ko vậy :))  (viết đề bị nhầm, là x,y,z dương chứ :))

Áp dụng Cauchy-Schwarz dạng cộng mẫu số:

\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)

\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)

Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)

\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)

Dấu bằng xảy ra khi và chỉ khi x=y=z,  Xong! :))

9 tháng 6 2018

tau không biết nhà xin lỗi 

6 tháng 12 2019

\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{y^2z^2}{x\left(y+z\right)}+\frac{z^2x^2}{y\left(z+x\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

30 tháng 3 2020

Ta có \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)

Xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)

<=> \(x^3\ge\left(2018^2-2.2018.x+x^2\right)\left(x-\frac{1009}{2}\right)\)

<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2018.2\right)+x\left(2018.1009+2018^2\right)-\frac{2018^2.1009}{2}\)

<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)

<=> \(\frac{9081}{2}\left(x^2-\frac{2.2018}{3}.x+\left(\frac{2018}{3}\right)^2\right)\ge0\)

<=> \(\frac{9081}{2}\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)

=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)

Khi đó \(VT\ge x-\frac{1009}{2}+y-\frac{1009}{2}+z-\frac{1009}{2}=2018-\frac{3}{2}.1009=\frac{1009}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)

30 tháng 3 2020

Ta có : \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)

xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)

<=> \(x^3\ge\left(x^2-2.2018.x+2018^2\right)\left(x-\frac{1009}{2}\right)\)

<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2.2018\right)+x\left(2018^2+1009.2018\right)-\frac{2018^2.1009}{2}\ge0\)

<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)

<=> \(\frac{9081}{2}.\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)

=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)

Khi đó \(P\ge x+y+z-\frac{3.1009}{2}=\frac{1009}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

22 tháng 6 2020

Theo AM - GM và Bunhiacopski ta có được 

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)

Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)

\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)

Đặt \(t=\frac{z}{x+y}\ge1\)

Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)

\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)

Vậy ta có đpcm

23 tháng 6 2020

Ta có:

\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)

Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\) 

23 tháng 8 2021

vì x2+y2+z2=1 mà x2+y2+z2>=xy+yz+xz suy ra 1>= xy+yz+xz

x2+y2+z2=1 suy ra (x-y)2=1-2xy-z2 ,(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]=\)

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)(do (x-y)2=1-2xy-z2(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2)

theo bdt cosi ta có:

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)

\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2z\sqrt{2xy}+2y\sqrt{2xz}+2x\sqrt{2yz}\right)]\)

\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-3\sqrt[3]{\left(2z\sqrt{2xy}.2y\sqrt{2xz}.2x\sqrt{2yz}\right)}\)

\(=\sqrt{3}+\frac{\sqrt{3}}{2}[1-2\sqrt{2}.\sqrt[3]{xyz^2}]\)\(=\sqrt{3}\left(1+\frac{1}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)=\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

suy ra 

\(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\left(doxy+yz+xz\le1\right)\)

ta giả sử:

\(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\Leftrightarrow\sqrt{3}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\) mà \(\sqrt{3}>\frac{3}{2}\)

suy ra \(\frac{3}{2}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\)(luôn đúng) suy ra điều giả sử trên là đúng

hay \(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

mà \(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\),\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)\(\le\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)

suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]\)(đpcm)

em mới có lớp 8, nếu em làm sai cho em xin lỗi nha anh

23 tháng 8 2021

bạn ơi đk: 1 trong 3 số x,y,z là >=0 còn lại là >0 thì nó vẫn ra điều trên