Cho hình chữ nhật có chu vi 52m. Nếu giảm mỗi cạnh đi 4m thì được hình chữ nhật mới có diện tích 77m2. Tính các kích thước của mảnh vườn hìn chữ nhật ban đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nửa chu vi của hình chữ nhật là:
52:2=26(m)
Gọi a(m) là chiều rộng ban đầu(Điều kiện: 0<a<26)
b(m) là chiều dài ban đầu(Điều kiện: 0<b<26)
(Điều kiện: \(a\le b\))
Vì nửa chu vi là 26m nên ta có phương trình: a+b=26(1)
Vì khi giảm mỗi cạnh 4m thì được hình chữ nhật mới có diện tích 77m2 nên ta có phương trình:
\(\left(a-4\right)\left(b-4\right)=77\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=26\\\left(a-4\right)\left(b-4\right)=77\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=26-b\\\left(26-b-4\right)\left(b-4\right)=77\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=26-b\\\left(-b+22\right)\left(b-4\right)=77\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=26-b\\-b^2+4b+22b-88-77=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=26-b\\b^2-26b+165=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=26-b\\\left(b-15\right)\left(b-11\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=26-b\\b-15=0\end{matrix}\right.\\\left\{{}\begin{matrix}a=26-b\\b-11=0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=11\\b=15\end{matrix}\right.\)
Vậy: Chiều rộng là 11m
Chiều dài là 15m
Lời giải:
Gọi chiều dài và chiều rộng của hình chữ nhật là $a,b$ (m)
Theo bài ra ta có:
$a+b=134:2=67$
$(a-1)(b-1)=28^2=784$
$\Leftrightarrow ab-(a+b)+1=784$
$\Leftrightarrow ab-67+1=784$
$\Leftrightarrow ab=850$
Từ $a+b=67$ và $ab=850$ áp dụng định lý Viet đảo thì:
$a,b$ là nghiệm của pt:
$X^2-67X+850=0$
$\Rightarrow (a,b) = (50,17)$
Mà $a>b$ nên chiều dài là 50 m, chiều rộng là 17m
gọi cd,cr lần lượt là a,b(a,b>0) thì nửa chu vi của hcn a+b=130.(1) nếu bớt chiều .......ta có pt
a-1/4 +b=110 suy ra a+b=110.25 (2) từ (1)và (2) hệ pt a+b=130
a+b=110.25 suy ra
Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề, ta có hệ phương trình:
2(a+b)=60 và (a+20)(b+10)=ab+700
=>a+b=30 và 10a+20b=500
=>a=10 và b=20
Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề, ta có hệ phương trình:
a+b=240/2=120 và a+3/4b=200/2=100
=>a=40 và b=80
Diện tích ban đầu là 40*80=3200m2
Nửa chu vi HCN ban đầu :
\(200:2=100\left(m\right)\)
Hiệu của chiều dài và chiều rộng ban đầu :
\(\left(175+25\right):5=40\left(m\right)\)
Chiều dài ban đầu :
\(\left(100+40\right):2=70\left(m\right)\)
Chiều rộng ban đầu :
\(100-70=30\left(m\right)\)
Diện tích HCN ban đầu :
\(70x30=2100\left(m^2\right)\)
Lời giải:
Gọi chiều dài và chiều rộng ban đầu của hình chữ nhật lần lượt là $a$ và $b$ (m)
Theo bài ra ta có:
\(\left\{\begin{matrix} a-b=12\\ (a-8)(b+5)=ab-13\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b+12\\ 5a-8b=27\end{matrix}\right.\Rightarrow 5(b+12)-8b=27\)
\(\Rightarrow b=11\) (m)
$a=b+12=23$ (m)
gọi chiều rộng ban đầu của mảnh vườn HCN là : x (m;x>5)
chiều dài ban đầu của mảnh vườn HCN là : x + 12 (m)
diện tích ban đầu là x.(x+12) (m2)
chiều rộng lúc sau của mảnh vườn HCN là : x + 5 (m)
chiều dài lúc sau của mảnh vườn HCN là x +12 - 8 = x +4
diện tích lúc sau là : (x+4).(x+5)
vì diện tích lúc sau giảm đi 13m2 nên ta có phương trình :
x(x+12) - (x+4)(x+5) = 13
\(x^2+12x-x^2-9x-20=13\)
\(3x-20=13\)
\(3x=33\)
\(x=11\)
giá trị x =11 thỏa mãn điều kiện của ẩn
chiều rộng ban đầu là : 11
chiều dài ban đầu là : 11+12 = 23