(a) 3x + 3x+1 + 3x+2 = 1003
(b) 5x . 519 = 520 . 511
(c) x2005 = x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://hoc24.vn/cau-hoi/a-5x-2x-62-50b-5x-x-150-2-3c-6x-x-511-59-31d-5x-3x-36-334-124x-2x-68-219-216.2785429565572
a: \(\Leftrightarrow7x=35\)
hay x=5
b: \(\Leftrightarrow6x=78\)
hay x=13
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
a)
\(\Rightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b)
\(\Rightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2=0\\3x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{3}\end{array}\right.\)
c)
\(\Rightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)^2.2=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
a: \(\Leftrightarrow6x=30\)
hay x=5
b: \(\Leftrightarrow6x=25+12-1=36\)
hay x=6
a: \(\Leftrightarrow8x=108+12=120\)
hay x=15
b: \(\Leftrightarrow6x=60\)
hay x=10
a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)
\(TH_1:3x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
\(TH_2:-2x-7=0\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)
b) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)
\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(TH_1:x=0\)
\(TH_2:x-1=0\)
\(\Leftrightarrow x=1\)
\(TH_3:2x-3=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)
\(TH_1:3x+4=0\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
\(TH_2:2x-4=0\)
\(\Leftrightarrow x=2\)
Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Rightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x-9x=-6-16+12\)
\(\Leftrightarrow11x=-10\)
\(\Leftrightarrow x=-\dfrac{10}{11}\)
Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)
a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow3x+1=5x+8\)
\(\Leftrightarrow3x-5x=8-1\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=\dfrac{-7}{2}\)
Vậy \(X=\dfrac{-7}{2}\)
b) Ta có: \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow9x^2-16-3x^2-4x=0\)
\(\Leftrightarrow6x^2-4x-16=0\)
\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)
\(\Leftrightarrow3x^2-6x+4x-8=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Leftrightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x+16-12-9x+6=0\)
\(\Leftrightarrow11x+10=0\)
\(\Leftrightarrow x=\dfrac{-10}{11}\)
Vậy \(x=\dfrac{-10}{11}\)
a: =3x^3-15x^2+21x
b: =-x^3+6x^2+5x-4x^2-24x-20
=-x^3+2x^2-19x-20
c: =9x^2+15x-3x-5-7x^2-14
=2x^2+12x-19
d: =10x^2-4x+2/3
a) => 3x (1 + 3 + 32) = 1003 => 3x . 13 = 1003 => 3x = \(\frac{1003}{13}\) => x thuộc tập hợp rỗng vì 3x không thuộc N.
b) => 5x+19 = 520+11 => x + 19 = 20 + 11 = 31 => x = 31 - 19 = 12
c) => \(\frac{x^{2005}}{x}=\frac{x}{x}\Rightarrow x^{2004}=1\Rightarrow x=1\) (1 nâng lũy thừa bậc mấy cũng bằng 1)