Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản với mọi giá trị của n \(n\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
goi d=UCLN(n3+2n;n4+3n2+1) (d\(\in\)N*)
\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d
n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)d \(\in\)U(1)ma d lon nhat , d\(\in\)N* nen d=1
do đó phân số trên là tối giản
Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))
=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
Gọi d=ƯCLN(3n+10;n+3)
=>3n+10-3n-9 chiahết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...
Bài 1 :
Ta có :
\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)
Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n
Chúc bạn học tốt ~
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
đặc d = 2n+1 ; 3n+2 với n thuộc Z
suy ra d / 2(3n+2)-3(2n+1)
suy rra d=1
vậy 2n+1/3n+1 là phân số tối giản
giả sử 2n+1/3n+2 la phan so toi gian (1)
ta thay 2 va 3 la 2 so nguyen to cung nhau (2)
tu (1) va (2)=>3(2n+1)/2(3n+2) cung la phan so toi gian
hay 6n+3/6n+4 cung la phan so toi gian
ta thay (6n+3;6n+4)=1=> dieu gia su la dung
Luu y :cai nay (...)la UCNN NHE