K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

ko bít

 

18 tháng 3 2022

CHỜ CHÚT

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=9^2+12^2=225\)

=>\(BC=\sqrt{225}=15\left(cm\right)\)

b: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

\(\widehat{ABD}=\widehat{MBD}\)

Do đó: ΔBAD=ΔBMD

=>DA=DM

c: Xét ΔDAE vuông tại A và ΔDMC vuông tại M có

DA=DM

\(\widehat{ADE}=\widehat{MDC}\)(hai góc đối đỉnh)

Do đó: ΔDAE=ΔDMC

=>AE=MC

Ta có: ΔBAD=ΔBMD

=>BA=BM

Xét ΔBEC có \(\dfrac{BA}{AE}=\dfrac{BM}{MC}\)

nên AM//EC

31 tháng 12 2022

a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

góc ABM=góc DBM

Do đó: ΔBAM=ΔBDM

=>BA=BD

b: XétΔABC vuông tại A và ΔDBE vuông tại D có

BA=BD

góc ABC chung

Do đo: ΔABC=ΔDBE

31 tháng 12 2022

vẽ hình như thế nào v bạn

1 tháng 5 2022

undefined

`a)` Áp dụng định lý pytago ta có :

`AB^2+AC^2=BC^2`

hay `9^2+12^2=BC^2`

`=>BC^2=225`

`=>BC=15(cm)`

`b)` Xét `ΔABC` và `ΔADC` ta có :

`AC` chung 

`\hat{BAC}=90^o`

`\hat{DAC}=90^o`

`=>ΔABC=ΔADC` (c.g.c)

19 tháng 3 2022

a, Áp dụng Đ. L. Py-ta-go vào tg ABC vuông tại A, có:

BC2=AB2+AC2

=>BC2=92+122=81+144=225.

=>BC=15(cm)

b, Xét tg ABD và tg EBD, có: 

góc ABD= góc DBE(tia phân giác)

BD chung.

góc A= góc E(=90o)

=>tg ABD= tg EBD(ch-gn)

19 tháng 3 2022

Câu c thì mình ... chịu :<

25 tháng 3 2022

giúp mình với

 

 

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

c: Ta có: DA=DE

mà DE<DC

nên DA<DC

d: Xét ΔBEI vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBI}\) chung

DO đó: ΔBEI=ΔBAC

Suy ra: BI=BC

hay ΔBIC cân tại B

1 tháng 5 2023

Tự kẻ hình

a) - Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác EBD vuông tại E (tc)
- Xét tam giác vuông ABD và tam giác vuông EBD, có:
+ Chung BD
+ góc ABD = góc EBD ( BD là p/giác góc ABC)
=> tam giác vuông ABD = tam giác vuông EBD (cạnh huyền - góc nhọn)

b) - Vì tam giác vuông ABD = tam giác vuông EBD (cmt)
=> AD = ED ( 2 cạnh tương ứng )
- Vì tam giác ABC vuông tại A (gt)
=> tam giác AMD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác ECD vuông tại E (tc)
- Xét tam giác vuông AMD và tam giác vuông ECD, có: 
+ AD = ED (cmt)
+ góc ADM = góc EDM (đối đỉnh)
=> tam giác vuông AMD = tam giác vuông ECD (cạnh góc vuông - góc nhọn kề) 
   => DM = DC (2 cạnh tương ứng) 

c) - Vì tam giác vuông AMD = tam giác vuông ECD (cmt)
=> AM = EC (2 cạnh tương ứng) 
- Xét tam giác vuông AMD, có 
   AD + AM > DM (bất đẳng thức tam giác) 
Mà AM = EC (cmt)
=> AD + EC > DM (đpcm) 

 

a: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: DA=DH

c: Xét ΔADE vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADE}=\widehat{HDC}\)

Do đó: ΔADE=ΔHDC

Suy ra: AE=HC

=>BE=BC

=>ΔBEC cân tại B

mà BD là phân giác

nên BD là đường cao