Cho a và b là 2 số nguyên khác 0 . Tìm GTLN,GTNN của biểu thức
A= \(\frac{2010a+2011b}{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)
Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)
Vậy \(2007\le ab+2009\le2011\)
Ta có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow4.2011a\left(2011a-2\right)\le\left(2011a+2011a-2\right)^2=4\left(2011a-1\right)^2\)
\(\Leftrightarrow2011a\left(2011a-2\right)\le\left(2011a-1\right)^2\)
\(\Leftrightarrow\frac{2011a\left(2011a-2\right)}{\left(2011a-1\right)^2}\le1\)
\(\Leftrightarrow\frac{1}{a}-\frac{2011a\left(2011a-2\right)}{\left(2011a-1\right)^2}\ge\frac{1}{a}-1\)\(\Leftrightarrow\frac{1}{a\left(2011a-1\right)^2}\ge\frac{1}{a}-1\)
Tương tự: \(\frac{1}{b\left(2011b-1\right)^2}\ge\frac{1}{b}-1;\frac{1}{c\left(2011c-1\right)^2}\ge\frac{1}{c}-1\)
\(\Leftrightarrow\frac{1}{a\left(2011a-1\right)^2}+\frac{1}{b\left(2011b-1\right)^2}+\frac{1}{c\left(2011c-1\right)^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-3=2011-3=2008\)
Sai thì thôi nhá bẹn!
\(A=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\\ A_{min}=-3\Leftrightarrow x=2\)
Biểu thức A ko có max
\(b^2=ac\Rightarrow\frac{b}{c}=\frac{a}{b}=\frac{2010a}{2010b}=\frac{2011b}{2011c}=\frac{2010a+2011b}{2010b+2011c}\)
\(\Rightarrow\frac{b}{c}.\frac{a}{b}=\left(\frac{2010a+2011b}{2010b+2011c}\right).\left(\frac{2010a+2011b}{2010b+2011c}\right)\)
\(\Rightarrow\frac{a}{c}=\frac{\left(2010a+2011b\right)^2}{\left(2010b+2011c\right)^2}\)