cho ABC có đường cao AH có góc C<B<90 độ, M là trung điểm nằm giữa H và B, N thuộc đường thằng BC nhưng không thuộc cạnh BC
a)CM: AB+HB<AC+HC
b)AM<AB<AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB = BH . BC = 9.BH
mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB
=> AB= 4,5
=> BH = 2,25 => HC = 6,75
Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)
Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)
hhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
\(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)
\(BH=\sqrt{3^2-2.4^2}=1.8\left(cm\right)\)
CH=BC-HB=5-1,8=3,2(cm)
AH=sin35*AB=........................
Áp dụng pytago ta có AH^2+BH^2=AB^2
Áp dụng hệ thức lượng AH^2=BH*CH
tự thay số vô tính nha bạn
Ta có:góc B + góc BAH=90
và góc ADH = góc C + góc DAC
Trong tam giác HAD vuông tại H ta có:góc HAD = 90- góc ADH
Hay góc HAD=(góc B+góc BAH) - (góc C+góc DAC)
=góc B - góc C +góc BAH -góc DAC
=30 - góc HAD
Suy ra :2x góc HAD = 30
Vậy góc HAD = 15