K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

Xét ΔHAC và ΔABC có

góc H=góc A

góc C chung

=>ΔHAC đồng dạngvới ΔABC

b: Xet ΔABC vuông tại A có AH vuông góc BC

nên AB*AC=AH*BC; AB^2=BH*BC; AC^2=CH*CB; HA^2=HB*HC; 1/AH^2=1/AB^2+1/AC^2

27 tháng 1 2022

giúp em với ạ mọi người thank moi người nhiều nha

 

27 tháng 1 2022

10p nha e

29 tháng 8 2014

Có AB^2 = BC . BH

AC^2 = BC . CH

AB^2 : AC^2 = (BC . BH ) : ( BC . CH) 

400/ 441 = BH / CH suy ra BH= 400/ 441 . CH

mà AH2 = BH . CH= CH2 . 400 /441

2402 = CH2 . 400/441

suy ra CH= 252

từ đó tính tiếp nhé

 

24 tháng 12 2016

ngu quá

30 tháng 4 2022

Xét \(\triangle ABD\) vuông tại \(A\) và \(\triangle HBD\) vuông tại H \(( DH \bot BC)\) ta có :

\(\widehat{ABD}=\widehat{HBD}\) ( tia phân giác của \(\widehat{ABC}\) cắt \(AC\) tại \(D\) )

Chung \(BD\)

\(\Rightarrow\) \(\triangle ABD\) \(=\) \(\triangle HBD\) ( ch - gn )

\(\Rightarrow AB = BH\) ( \(2\) cạnh tương ứng ) (1) 

Do \(\begin{cases} \widehat{BAD} = 90^o\\ \widehat{BHD} = 90^0\end{cases}\)

\(\Rightarrow \widehat{KAD} = \widehat{CHD} = 90^o\)

Xét \(\triangle AKD\) vuông tại \(A\) và \(\triangle HCD\) vuông tại \(H\) ta có :

\(\widehat{ADK} = \widehat{HDC}\) ( \(2\) góc đối đỉnh ) 

\(AD=DH \) ( \(\triangle ABD = \) \(\triangle HBD\) )

\(\Rightarrow\) \(\triangle AKD=\) \(\triangle HCD\) ( cgv - gnk )

\(\Rightarrow AK = CH\) ( \(2\) cạnh tương ứng ) (2) 

Từ (1) và (2)

\(\Rightarrow AB+AK = BH+CH\)

\(\Leftrightarrow BK=BC\)

\(\Rightarrow \triangle KBC\) cân tại \(B\)

 

 

30 tháng 4 2022

Hình vẽ :

undefined