K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

M=1+2+3+4....+bc=abc

M=1+2+3+4....+bc=100a+bc

M=1+2+3+4....+n=100a

M= n(n+1)/2=100a

=>n(n+1) =200a

=> n=24 ( a=3)

vậy bc=25 => ab=32

11 tháng 1 2018

abc = 325

\(\Leftrightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\)

=>-4a+3b-4a+3b=0

=>-8a=-6b

=>4a=3b

hay a/3=b/4

21 tháng 1 2022

Ta có :

\(\left(a+3\right)\left(b-4\right)\left(a-3\right)\left(b+4\right)=0\)

\(\Rightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\)

\(\Rightarrow ab-4a+3b-12-ab+4a+3b+12=0\)

\(\Rightarrow6b-8a=0\)

\(\Rightarrow3b=4a\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}\)

28 tháng 10 2018

1. \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

2. \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3.Còn có a + b + c = 0 nữa mà bn.

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

+ \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

28 tháng 10 2018

làm đúng mà ko hiểu

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

23 tháng 12 2021

Sửa đề: a^3+b^3+c^3=3abc

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=>ĐPCM

27 tháng 3 2018

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

27 tháng 3 2018

người ta hỏi thầy ( cô) giáo chứ có phải.......

28 tháng 2 2021

`a^3+b^3+c^3=3abc(***)`

`a^3+b^3+c^3-3abc=0`

`<=>a^3+3ab(a+b)+c^3-3ab(a+b)-3abc=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+2ab-ac-bc)-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ac-bc-ab)=0`

Luôn đúng với `a+b+c=0`

`=>(***)` được chứng minh.

Ta có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)(đpcm)

Xét \(a^3+b^3+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\) 

27 tháng 9 2015

ta có a+b+c=0=>a+b=-c

ta lại có a^3+b^3+c^3

          =(A+b)(a^2-ab+b^2)+c^3

          =-c [(A+b)^2-2ab-ab)]+c^3

        =   -c (-c^2-3ab)+c^3

        =      -c(c^2-3ab)+c^3

         =  -c^3 +3abc+c^3

         =3abc

27 tháng 9 2015

vì mọi số mũ abc đều mũ 3 nên 3abc là kết quả khi cộng các số đó mũ 3 thì kết quả ko thay đổi

29 tháng 6 2015

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

29 tháng 6 2015

 Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc

            (a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc

            (a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc

            (a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc

  thay a+b+c=0 ta được 

              03=a3+b3+c3+3.0(ab+bc+ac)-3abc

             0=a3+b3+c3-3abc

=>a3+b3+c3=3abc