K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>x^2+4x+4-x^2-10x-25<=-8x-10

=>-6x-21<=-8x-10

=>2x<=11

=>x<=11/2

4 tháng 7 2016

bạn phân tích biểu thức thành nhân tử rồi xét :

Nếu >0 thì các nhân tử phải cùng âm hoặc dương

nếu <0 thì các nhân tử trái dấu

tương tự như phân số 

nếu >0 thì tử và mẫu cùng dấu

nếu <0 thì trái dấu

:) chúc bạn làm tốt nha dễ mà

16 tháng 7 2021

| 2-4x | = 4x-2

<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)

<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)

=> \(S=\left\{\frac{1}{2};\infty\right\}\)

2x-7> 3(x-1)

<=>2x-7>3x-3

<=>2x-3x>-3+7

<=>-x>4

<=>x<4

=>S={x/x<4}

1-2x<4(3x-2)

<=>1-2x<12x-8

<=>-2x-12x<-8-1

<=>-14x<-9

<=>x>\(\frac{9}{14}\)

=>S={\(\frac{9}{14}\)}

-3x+2|-4 -x|> 0

<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)

<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)

=>S={x/x<3;x/x<\(\frac{1}{4}\)}

4x-1|x-2|< 0

<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)

<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)

=>S={x/x<\(\frac{-1}{3}\);x/x<1}

12 tháng 6 2020

Bài làm:

a) \(4x\left(x+2\right)=4x^2-24\)

\(\Leftrightarrow4x^2+8x=4x^2-24\)

\(\Leftrightarrow8x=-24\)

\(\Leftrightarrow x=-3\)

Vậy tập nghiệm của phương trình \(S=\left\{-3\right\}\)

b) \(\frac{x-2}{3}< \frac{8x-5}{9}\)

\(\Leftrightarrow\frac{3\left(x-2\right)}{9}< \frac{8x-5}{9}\)

\(\Leftrightarrow3x-6< 8x-5\)

\(\Leftrightarrow-5x< 1\)

\(\Leftrightarrow x>-\frac{1}{5}\)

Vậy \(x>-\frac{1}{5}\)

c) đkxđ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

Ta có: \(\frac{3}{x-2}+\frac{2}{x+2}=\frac{2x+5}{x^2-4}\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+5}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow3\left(x+2\right)+2\left(x-2\right)=2x+5\)

\(\Leftrightarrow3x+6+2x-4=2x+5\)

\(\Leftrightarrow3x=3\)

\(\Leftrightarrow x=1\left(tm\right)\)

Vậy tập nghiệm của phương trình \(S=\left\{1\right\}\)

Học tốt!!!!

23 tháng 4 2018

1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh

b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh

Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy