K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

a) Từ giả thiết : \(a^2+2c^2=3b^2+19\Rightarrow a^2+2c^2-3b^2=19\)

Ta có : \(\frac{a^2+7}{4}=\frac{b^2+6}{5}=\frac{c^2+3}{6}=\frac{3b^2+18}{15}=\frac{2c^2+6}{12}\)\(=\frac{a^2+7+2c^2+6-3b^2-18}{4+12-15}=\frac{14}{1}=14\)

\(\Rightarrow\)\(a^2=49\Rightarrow a=7\)

\(\Rightarrow\)\(b^2=64\Rightarrow b=8\)

\(\Rightarrow\)\(c^2=81\Rightarrow c=9\)

b) \(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

Vì \(x^2+x+1=\left(x^2+2x\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu bằng xảy ra khi và chỉ khi \(x=-\frac{1}{2}\)

21 tháng 2 2018

Bố già giỏi qa

15 tháng 2 2018

Ta có : \(\frac{a^2+7}{4}=\frac{2b^2+12}{10}=\frac{3c^2+9}{18}=\frac{a^2+2b^2+3c^2+28}{32}\)

Mà \(a^2+2b^2=3c^2+19\)thay vào trên ta đc : 

\(\frac{3c^2+9}{18}=\frac{3c^2+19+3c^2+28}{32}\)

Giải pt 1 ẩn trên ta đc  : \(4c^2+186=0\) Vì \(4c^2\ge0\) Suy ra pt vô nghiệm 

Vậy ko tồn tại các số : a,b,c .

15 tháng 2 2018

Từ giả thiết: \(a^2+2c^2=3b^2+19\Rightarrow a^2+2c^2-3b^2=19\)

Ta có: \(\frac{a^2+7}{4}=\frac{b^2+6}{5}=\frac{c^2+3}{6}=\frac{3b^2+18}{15}=\frac{2c^2+6}{12}=\frac{a^2+7+2c^2+6-3b^2-18}{4+12-15}=14\)

Suy ra: \(a^2=49\Rightarrow a=7\)

            \(b^2=64\Rightarrow b=8\)

             \(c^2=81\Rightarrow c=9\)

14 tháng 12 2016

đề bài sai rồi

Ta cóA=a3+a2-b3+b2+ab-3ab(a-b+1)

=(a3-b3)+(a2+ab+b2)-24ab(do a-b=7)

=(a-b)(a2+ab+b2)+(a2+ab+b2)-24ab

=(a2+ab+b2)(a-b+1)-24ab

mà a-b=7=>A=8a2+8ab+8b2-24ab

=8a2-16ab+8b2

=8(a-b)2=8 . 72=8 . 49=392

30 tháng 10 2016

Ta có:\(a^5+ab+b^2\ge3a^2b\)

Tương tự ta có:

\(VT\le\frac{1}{\sqrt{3ab\left(a+2c\right)}}+\frac{1}{\sqrt{3bc\left(b+2a\right)}}+\frac{1}{\sqrt{3ca\left(c+2b\right)}}\)

\(=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{c}{c+2a}}+\sqrt{\frac{a}{b+2a}}+\sqrt{\frac{b}{2b+c}}\right)\)

Ta cũng có:\(a+2c=a+c+c\ge\frac{1}{3}\left(\sqrt{a}+2\sqrt{c}\right)^2\)

\(\Rightarrow VT\le\frac{\sqrt{c}}{\sqrt{a}+2\sqrt{c}}+\frac{\sqrt{a}}{\sqrt{b}+2\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{c}+2\sqrt{b}}\)

Đặt \(x=\frac{\sqrt{a}}{\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}};z=\frac{\sqrt{c}}{\sqrt{b}};xyz=1\)

\(\Rightarrow VT\le\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)

Giả sử \(xy\le1\) thì \(z\ge1\)

Ta có: \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{2}\left(\frac{1}{\frac{x}{2}+1}+\frac{1}{\frac{y}{2}+1}\right)+\frac{1}{z+2}\)

\(\le\frac{1}{1\frac{\sqrt{xy}}{2}}+\frac{1}{z+2}\le1\)(Đpcm)

Dấu = khi \(a=b=c=1\)

30 tháng 10 2016

sao chứng minh đc \(a^5+ab+b^2\ge3a^2b\)vậy bạn

21 tháng 5 2018

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có : 

\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)

\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)

\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)

Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)

PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))

28 tháng 5 2018

nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm

30 tháng 8 2021

B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc

31 tháng 8 2021

Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.