K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (SAB) giao (ABCD)=AB

SA vuông góc AB, SA thuộc (SAB)

AD vuông góc AB, AD thuộc (ABCD)

=>((SAB);(ABCD))=góc SAD=90 độ

 

29 tháng 4 2018

15 tháng 1 2017

Đáp án B

Vì ABCD là hình vuông ⇒ A B ⊥ A D 1  

Ta có S A B ⊥ A B C D S A C ⊥ A B C D ⇒ S A ⊥ A B C D ⇒ S A ⊥ A B 2  

Từ (1), (2) suy ra A B ⊥ S A D   ⇒ S B ; S A D ^ = S B ; S A ^ = B S A ^  

Tam giác SAB vuông tại A, có  cos B S A ^ = S A S B = S A S A 2 + A B 2 = 2 5 5 .

9 tháng 2 2018

Chọn B.

Phương pháp: Sử dụng định nghĩa góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

11 tháng 7 2018

Chọn B

3 tháng 6 2019

9 tháng 12 2017

18 tháng 4 2017

Đáp án A

Ta có C B ⊥ A B C B ⊥ S A ⇒ C B ⊥ ( S A B )  

Do đó S C ; S A B ^ = C S B ^ = α  

⇒ S B = a tan α = 5 a 10 ⇒ S A = S B 2 - A B 2 = a 6 2

Ta có S O ; A B C D ^ = S O A ^ trong đó  t a n S C A ^ = S A O A = a 6 2 a 2 2 = 3 .

NV
25 tháng 3 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow\widehat{BSC}\) là góc giữa SC và (SAB)

\(tan\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{\sqrt{10}}{5}\Rightarrow SB=\dfrac{a\sqrt{10}}{2}\)

\(\Rightarrow SA=\sqrt{SB^2-AB^2}=\dfrac{a\sqrt{6}}{2}\)

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SOA}\) là góc giữa SO và (ABCD)

\(AO=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\)

\(tan\widehat{SOA}=\dfrac{SA}{AO}=\sqrt{3}\Rightarrow\widehat{SOA}=60^0\)

1 tháng 5 2018