Cho tam giác ABC nhọn, AB > AC nội tiếp (O). Đường cao BE, CF cắt nhau tại H. AO cắt EF tại I, cắt (O) tại J.
a, CMR : BFIJ nội tiếp
b, BC cắt EF tại M, N : giao của AM với (O). CMR : ANEF nội tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Kẻ tiếp tuyến Ax tại A của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>OA vuông góc FE tại I
góc ABJ=1/2*180=90 độ
góc FBJ+góc FIJ=180 độ
=>FBJI nội tiếp
b: Xét ΔMNC và ΔMBA có
góc MNC=góc MBA
góc M chung
=>ΔMNC đồng dạng vơi ΔMBA
=>MN/MB=MC/MA
=>MN*MA=MB*MC
Xét ΔMBF và ΔMEC có
góc MBF=góc MEC
góc M chung
=>ΔMBF đồng dạg với ΔMEC
=>MB/ME=MF/MC
=>MB*MC=ME*MF=MN*MA
=>MF/MA=MN/ME
=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE
=>góc NAE+góc NFE=180 độ
=>ANFE nội tiếp
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(AE\cdot AC=AB\cdot AF\)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc MFB=góc MCE
Xét ΔMFB và ΔMCE có
góc MFB=góc MCE
góc M chung
=>ΔMFB đồng dạng với ΔMCE
=>MF/MC=MB/ME
=>MF*ME=MB*MC
a: Xét tứ giác BDEA có
góc BDA=góc BEA=90 độ
=>BDEA là tứ giác nội tiếp
b: Kẻ tiếp tuyến Ax
=>góc xAC=góc ABC
mà góc ABC=góc AEF(=180 độ-góc FEC)
nên góc xAC=góc AEF
=>Ax//FE
=>FE vuông góc OA
Xét (O) có
ΔACA' nội tiếp
AA' là đường kính
=>ΔACA' vuông tại C
Xét tứ giác A'CEM có
góc EMA'+góc ECA'=180 độ
=>A'CEM là tứ giác nội tiếp
ME^2=MP*MK
=>ME/MK=MP/ME
=>ΔMEK đồng dạng vơi ΔMPE
=>góc MKE=góc PEM
=>góc KEF=góc KPE
góc KAB=góc KFB+góc KEF
=>gócKAF=góc KEF
=>KAEF nội tiếp
=>góc KFE+góc KAE=180 độ
mà góc KQC+góc KAC=180 độ
góc KQF+góc NFK=180 độ
nên góc KQF+góc NFQ+góc QFK=180 độ
màgóc KQF+góc QFK+góc QKF=180 độ
nên góc NFQ=góc QKF
góc NBK=1/2*sđ cung NK=góc KAF=góc AEF
=>NBEK nội tiếp
=>góc NKE+góc NBE=180 độ
góc NFK+góc FKE=góc NKE=180 độ-góc NBE
=>góc NKF=180 độ-góc NBE-góc FKE
=>góc NKF=180 độ-góc BCP-góc FAE
=>góc NKF=góc BAP-góc FAE=góc CAP
mà góc CAP=góc CBP=goc CFE=góc QFN=góc QKF
nên Q,K,N thẳng hàng
a: Kẻ tiếp tuyến Ax tại A của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>OA vuông góc FE tại I
góc ABJ=1/2*180=90 độ
góc FBJ+góc FIJ=180 độ
=>FBJI nội tiếp
b: Xét ΔMNC và ΔMBA có
góc MNC=góc MBA
góc M chung
=>ΔMNC đồng dạng vơi ΔMBA
=>MN/MB=MC/MA
=>MN*MA=MB*MC
Xét ΔMBF và ΔMEC có
góc MBF=góc MEC
góc M chung
=>ΔMBF đồng dạg với ΔMEC
=>MB/ME=MF/MC
=>MB*MC=ME*MF=MN*MA
=>MF/MA=MN/ME
=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE
=>góc NAE+góc NFE=180 độ
=>ANFE nội tiếp