cho đa thức A(x) khác 0 thỏa mãn x*A(x-2)=(x-4)*A(x)với mọi giá trị của x
Chứng minh rằng A(x) có 2 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}\) ( tính chất dãy tỉ số bằng nhau)
\(=\frac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Ta có:
\(b+c=2a\)
\(\Rightarrow2b+2c=4a\)
Mà 2c=a+b
\(\Rightarrow\)2b+a+b=4a
\(\Rightarrow3b=3a\)
\(\Rightarrow a=b\)
Chứng minh tương tự:b=c;a=c
Thay vào biểu thức:
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2\times2\times2=8\)8
Với x = 2 ta có: 6.f(2) = 0.f(3) => f(2) = 0 => phương trình có 1 nghiệm dương x = 2
Với x = 1 ta có: 3. f(1) = - 1.f(2) = -1.0 = 0 => f(1) = 0 => phương trình có 1 nghiệm dương x = 1
=> phương trình có ít nhất 2 nghiệm dương khác nnhau
\(x=0\Rightarrow A\left(0\right)=0\Rightarrow0\text{ là một nghiệm của PT}\)
\(x=4\Rightarrow A\left(2\right)=0\Rightarrow2\text{ là một nghiệm của PT}\)
\(\text{Vậy: }A\left(x\right)\text{ có thể viết dưới dạng }A\left(x\right)=x\left(x-2\right).Q\left(x\right)\)
\(\Rightarrow x.\left(x-2\right)\left(x-4\right).Q\left(x-2\right)=\left(x-4\right).x.\left(x-2\right).Q\left(x\right)\)
\(\Rightarrow x\left(x-2\right)\left(x-4\right).\left[Q\left(x\right)-Q\left(x-2\right)\right]=0\)
\(\text{Có thể thấy: }Q\left(x\right)=Q\left(x-2\right)=m\Rightarrow x=0,2,4\text{ thế vào PT, ta có: }x=4\text{ đã cho không nghiệm}\)
Xét (x-4)A(x)=(x+2)A(x-1)
Thay x=4 vào đa thức (x-4)A(x)=(x+2)A(x-1) ta có:
(4-4)A(4)=(4+2)A(4-1)
=>0A(4)=6A(3)
=>0= A(3)
=> x=3 là một nghiệm của đa thức A(x) (1)
Thay x=-2 vào đa thức (x-4)A(x)=(x+2)A(x-1) ta có:
(-2-4)A(-2)=(-2+2)A(-2-1)
=>-6A(-2)=0A(-3)
=>-6A(-2)=0
=>A(-2)=0
=> x=-2 là một nghiệm của đa thức A(x) (2)
Từ (1) và (2)=> đa thức A(x) có ít nhất 2 nghiệm