K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2020

sai sai

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)

AH
Akai Haruma
Giáo viên
20 tháng 2 2022

Lời giải:

PT $\Leftrightarrow (a^2+b^2)^2-2(a^2+b^2)c^2+c^4-a^2b^2=0$

$\Leftrightarrow (a^2+b^2-c^2)^2-(ab)^2=0$

$\Leftrightarrow (a^2+b^2-c^2-ab)(a^2+b^2-c^2+ab)=0$

$\Rightarrow a^2+b^2-c^2-ab=0$ hoặc $a^2+b^2-c^2+ab=0$

Áp dụng định lý cosin:

Nếu $a^2+b^2-c^2-ab=0$

$\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+b^2-c^2}{2(a^2+b^2-c^2)}=\frac{1}{2}$

$\Rightarrow \widehat{C}=60^0$

Nếu $a^2+b^2-c^2+ab=0$

$\cos C=\frac{-1}{2}\Rightarrow \widehat{C}=120^0$

 

9 tháng 9 2017

1, C/m : a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab) 
Ta có : 2( a^3 + b^3 + c^3 ) = ( a^3 + b^3 + c^3 ) + ( a^3 + b^3 + c^3 ) 
≥ 3abc + a^3 + b^3 + c^3 ( BĐT Côsi ) 
= a^3 + abc + b^3 + abc + c^3 + abc ≥ 2.a^2.căn (bc) + 2.b^2.căn (ac) + 2.c^2.căn (ab) ( BĐT Côsi ) 
=> a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab) 
Dấu " = " xảy ra khi a = b = c. 


2, C/m : (a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (3/2)(a + b + c) ( 1 ) 
Áp dụng BĐT Bunhiacốpxki cho phân số ( :D ) ta được : 
(a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (a^2 + b^2 + c^2).[(1+1+1)^2/(a+b+b+c+a+c)] = (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] 
(1) <=> (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] ≥ (3/2)(a + b + c) 
<=> 3(a^2 + b^2 + c^2) ≥ (a + b + c)^2 
<=> a^2 + b^2 + c^2 ≥ ab + bc + ca. 
BĐT cuối đúng nên => đpcm ! 
Dấu " = " xảy ra khi a = b = c. 


3, C/m : a^4 + b^4 + c^4 ≥ (a + b + c)abc 
Ta có : 2( a^4 + b^4 + c^4 ) = (a^4 + b^4 +c^4) + (a^4 + b^4 +c^4) 
≥ ( a^2.b^2 + b^2.c^2 + c^2.a^2 ) + (a^4 + b^4 +c^4) = ( a^4 + b^2.c^2 ) + ( b^4 + c^2.a^2 ) + ( c^4 + a^2.b^2 ) 
≥ 2.a^2.bc + 2.b^2.ca + 2.c^2.ab ( BĐT Côsi ) 
= 2.abc(a + b + c) 
Do đó a^4 + b^4 + c^4 ≥ (a + b + c)abc 
Dấu " = " xảy ra khi a = b = c. 

11 tháng 1 2022

Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0

+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1

⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1

Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4

⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2

+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự