Cho tam giác ABC vuông ở A có AH là đường cao và BE là đường phân giác (H thuộc BC, E thuộc AC). Kẻ AD vuông góc với BE tại H.
a) CM AHBD nt đường tròn (o) và xác định tâm O
b) CM OD vuông góc với AH
c) CM HDC=CEH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ADB=góc AHB=90 độ
=>ADHB nội tiếp
b: góc EAD=90 độ-góc BAD=góc ABE
=>góc EAD=góc HBE
Trả lời..............
Theo mình làm là ..........
a, Chứng minh tứ giác ADHB nội tiết có:ADB=900(AD vuông với BE)
AHB=900 (AH là đường cao)
Suy ra:ADB=AHB=900
Vậy tứ giác ABHB nội tiếp đường tròn đường kính AB
Tâm O đường tròn là trung điểm AB
b, Chứng minh EAD=HBD
Do AB vuông góc vớiAB
Suy ra EAD =ABD (1)
Mà ABD=HBD (2)
Từ (1) và (2) ta được EAD=HBD
Chứng minh OD sOng song OB
Ta có OD=OB
Nên tam giác OBD cân tại O
Suy ra OD song song OB
c, Tính diện tích phần tam giác ABC nằm ngoài đường tròn O
Ta có:ABC=60 độ
Xin lỗi tới đây tớ ko biết làm
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
Xét ΔAHB vuông tại H và ΔACD vuông tại C có
góc ABH=góc ADC
=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE
=góc ABE+90 độ-góc HAB
=90 độ
=>HE vuông góc AC
=>HE//CD