Tìm m thỏa mãn đa thức A(x)= x2 -5mx+10-4 có nhiệm và nghiệm này gấp 2 lần nghiệm kia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A\left(x\right)=x^2-5mx+10m-4\)
\(\Leftrightarrow\Delta=\left(5m-4\right)^2\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=5m-2\\x_2=2\end{matrix}\right.\)
Ta có 2 trường hợp:
Trường hợp 1: Nếu \(x_1=2x_2\)
\(\Leftrightarrow5m-2=4\Leftrightarrow5m=6\Leftrightarrow m=\dfrac{6}{5}\)
Trường hợp 2: Nếu \(x_2=2x_1\)
\(\Leftrightarrow2\left(5m-2\right)=2\Leftrightarrow5m-2=1\)
\(\Leftrightarrow5m=3\Leftrightarrow m=3\div5=\dfrac{3}{5}\)
Vậy \(m=\dfrac{3}{5}\) hoặc \(m=\dfrac{6}{5}\) là các giá trị cần tìm
Nếu là lớp 9 thì có thể dùng delta. Nhưng nếu lớp 7 thì theo cách này:
Giải:
Với \(x=2\) thay vào \(A\left(x\right)\) thì ta có:
\(A\left(2\right)=2^2-5m.2+10m-4\)
\(=4-10m+10m-4=0\)
\(\Rightarrow2\) là 1 nghiệm của đa thức \(A\left(x\right)\)
Vậy đa thức \(A\left(x\right)\) có hai nghiệm mà nghiệm này bằng hai lần nghiệm kia
\(\Leftrightarrow\) Nghiệm còn lại của đa thức \(A\left(x\right)\) là \(1\) hoặc là \(4\)
\(*)\) \(x=1\) là nghiệm của đa thức \(A\left(x\right)\Leftrightarrow A\left(1\right)=0\)
\(\Leftrightarrow5m-3=0\Leftrightarrow m=\dfrac{3}{5}\)
\(*)\) \(x=4\) là nghiệm của đa thức \(A\left(x\right)\Leftrightarrow A\left(4\right)=0\)
\(\Leftrightarrow12-10m=0\Leftrightarrow m=\dfrac{6}{5}\)
Vậy \(m=\dfrac{3}{5}\) hoặc \(m=\dfrac{6}{5}\) là các giá trị cần tìm
\(\text{Δ}=\left(-5m\right)^2-4\left(10m-4\right)\)
\(=25m^2-40m+16=\left(5m-4\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Áp dụng Vi-et,ta được:
\(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=10m-4\end{matrix}\right.\)(1)
Theo đề, ta có hệ phương trình: \(\left\{{}\begin{matrix}x_1=2x_2\\x_1+x_2=5m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=5m\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}m\\x_1=\dfrac{10}{3}m\end{matrix}\right.\)(2)
Từ (1) và (2) suy ra \(10m-4=\dfrac{5}{3}m\cdot\dfrac{10}{3}m\)
\(\Leftrightarrow m^2\cdot\dfrac{50}{9}-10m+4=0\)
\(\Leftrightarrow50m^2-90m+40=0\)
=>5m2-9m+4=0
=>(m-1)(5m-4)=0
=>m=4/5 hoặc m=1
Mình vẫn chưa hiểu câu hỏi lắm
"Nhiệm" là gì?
Và "nghiệm kia" là cái gì?