K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Mình vẫn chưa hiểu câu hỏi lắm

"Nhiệm" là gì?

Và "nghiệm kia" là cái gì?

26 tháng 4 2017

Ta có:

\(A\left(x\right)=x^2-5mx+10m-4\)

\(\Leftrightarrow\Delta=\left(5m-4\right)^2\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=5m-2\\x_2=2\end{matrix}\right.\)

Ta có 2 trường hợp:

Trường hợp 1: Nếu \(x_1=2x_2\)

\(\Leftrightarrow5m-2=4\Leftrightarrow5m=6\Leftrightarrow m=\dfrac{6}{5}\)

Trường hợp 2: Nếu \(x_2=2x_1\)

\(\Leftrightarrow2\left(5m-2\right)=2\Leftrightarrow5m-2=1\)

\(\Leftrightarrow5m=3\Leftrightarrow m=3\div5=\dfrac{3}{5}\)

Vậy \(m=\dfrac{3}{5}\) hoặc \(m=\dfrac{6}{5}\) là các giá trị cần tìm

2 tháng 5 2017

Nếu là lớp 9 thì có thể dùng delta. Nhưng nếu lớp 7 thì theo cách này:

Giải:

Với \(x=2\) thay vào \(A\left(x\right)\) thì ta có:

\(A\left(2\right)=2^2-5m.2+10m-4\)

\(=4-10m+10m-4=0\)

\(\Rightarrow2\) là 1 nghiệm của đa thức \(A\left(x\right)\)

Vậy đa thức \(A\left(x\right)\) có hai nghiệm mà nghiệm này bằng hai lần nghiệm kia

\(\Leftrightarrow\) Nghiệm còn lại của đa thức \(A\left(x\right)\)\(1\) hoặc là \(4\)

\(*)\) \(x=1\) là nghiệm của đa thức \(A\left(x\right)\Leftrightarrow A\left(1\right)=0\)

\(\Leftrightarrow5m-3=0\Leftrightarrow m=\dfrac{3}{5}\)

\(*)\) \(x=4\) là nghiệm của đa thức \(A\left(x\right)\Leftrightarrow A\left(4\right)=0\)

\(\Leftrightarrow12-10m=0\Leftrightarrow m=\dfrac{6}{5}\)

Vậy \(m=\dfrac{3}{5}\) hoặc \(m=\dfrac{6}{5}\) là các giá trị cần tìm

3 tháng 5 2017

Hình như m có 3 giá trị là \(\dfrac{2}{5},\dfrac{3}{5},\dfrac{6}{5}\) mà, đúng k bn? hihi

\(\text{Δ}=\left(-5m\right)^2-4\left(10m-4\right)\)

\(=25m^2-40m+16=\left(5m-4\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Áp dụng Vi-et,ta được:

\(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=10m-4\end{matrix}\right.\)(1)

Theo đề, ta có hệ phương trình: \(\left\{{}\begin{matrix}x_1=2x_2\\x_1+x_2=5m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=5m\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}m\\x_1=\dfrac{10}{3}m\end{matrix}\right.\)(2)

Từ (1) và (2) suy ra \(10m-4=\dfrac{5}{3}m\cdot\dfrac{10}{3}m\)

\(\Leftrightarrow m^2\cdot\dfrac{50}{9}-10m+4=0\)

\(\Leftrightarrow50m^2-90m+40=0\)

=>5m2-9m+4=0

=>(m-1)(5m-4)=0

=>m=4/5 hoặc m=1