Cho a,b,c ko âm và ko lớn hơn 2 thoả: a+b+c=3. C/m: a^2 +b^2+c^2 <= 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(0\le a;b;c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow\left(4-2a-2b+ab\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow8-4c-4a+2ac-4b+2bc+2ab-abc\ge0\)
\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ac\right)-abc\ge0\)
\(\Leftrightarrow-4+a^2+b^2+c^2+2\left(ab+bc+ac\right)-abc\ge a^2+b^2+c^2\)
\(\Leftrightarrow5\ge a^2+b^2+c^2+abc\ge a^2+b^2+c^2\Rightarrow a^2+b^2+c^2\le5\)\("="\Leftrightarrow\left(a;b;c\right)=\left(0;1;2\right)\) và hoán vị
Do \(0\le a;b;c\le2\)
\(\Rightarrow abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\)
\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\ge4\)
\(\Leftrightarrow9-\left(a^2+b^2+c^2\right)\ge4\)
\(\Leftrightarrow a^2+b^2+c^2\le5\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị
Qúa dễ luôn
Ta có : a x 2 + b x 2 + c x 2 \(\le\) 5
2 x ( a + b + c ) \(\le\)5
a + b + c \(\le\) 5/2
a + b + c \(\le\) 2,5
Mà theo đề bài : a + b + c không lớn hơn 2 ( có nghĩa là bé hơn 2 ) . Nên a + b + c phải luôn luôn bé hơn 2,5 ( vì 2 luôn bé hơn 2,5 )
Vậy : a x 2 + b x 2 + c x 2 \(\le\) 5
Vì \(0\le a,b,c\le2\)nên:
\(abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow abc+2bc-abc+2ac-4c+2ab-4b-4a+8\ge0\)
\(\Leftrightarrow2bc+2ac+2ab-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)-12+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)\ge4\)
Do đó: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\le3^2-4=5\)
(Dấu "="\(\Leftrightarrow\)(a,b,c) là các hoán vị của (0,1,2))
Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
=> \(a^2-2ab+b^2+b^2-2ac+c^2+c^2-2ac+a^2\ge0\)
=> \(2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2bc\)
=> \(3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2bc\)
=> \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=100\)
=> \(a^2+b^2+c^2\ge\frac{100}{3}\)
Vậy ....
Theo giả thuyết ta có:
\(\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\Leftrightarrow8+2\left(ab+bc+ca\right)-4\left(a+b+c\right)-abc\ge0\)
Cộng 2 vế cho \(a^2+b^2+c^2\) rồi sau đó rút gọn thì ta sẽ được:
\(\left(a+b+c\right)^2\ge a^2+b^2+c^2+abc+4\Leftrightarrow a^2+b^2+c^2+abc\le5\)
Do \(abc\ge0\Rightarrow a^2+b^2+c^2\le5\)