Chứng minh rằng 2+2=5
Giúp mình vs nha!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 5 số chẵn liên tiếp là a; a+2; a+4; a+6; a+8
Ta có a + (a+2) + (a+4) + (a+6) + (a+8)
= a + a + a + a + a + 2 + 4 + 6 + 8
= 5a + 20
Ta có a \(⋮\) 2 => 5a \(⋮\) 5.2 = 10
20 \(⋮\) 10
=> 5a + 20 \(⋮\) 10
Vậy tổng của 5 số chẵn liên tiếp thì chia hết cho 10
Gọi 5 số lẻ liên tiêp là b; b+1; b+2; b+3; b+4
tương tự b + (b+1) + (b+2) + (b+3) + (b+4) = 5b +20
Do b là số lẻ => 5b có tận cùng là 5
=> 5b + 20 có tận cùng là chữ số 5
=> 5b+20 chia 10 dư 5
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
à mà bạn ơi, bạn có thể cho mình biết tại sao 3(2n + 3) lại = (6n + 10) không nhỉ?
3x2 + y2 + 10x - 2xy + 2021 = 0
<=> ( x2 - 2xy + y2 ) + ( 2x2 + 10x +\(\frac{25}{2}\)) +\(\frac{4017}{2}\)= 0
<=> ( x - y )2 + 2 ( x +\(\frac{5}{2}\))2 +\(\frac{4017}{2}\)= 0
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\2\left(x+\frac{5}{2}\right)^2\ge0\end{cases}}\forall x\)=> ( x - y )2 + 2 ( x +\(\frac{5}{2}\))2 +\(\frac{4017}{2}\)\(\ge\frac{4017}{2}\)
=> Không có giá trị x ; y thỏa mãn pt trên
3x2 + y2 + 10x - 2xy + 2021 = 0
<=> ( x2 - 2xy + y2 ) + ( 2x2 + 10x + 25/2 ) + 4017/2 = 0
<=> ( x - y )2 + 2( x2 + 5x + 25/4 ) + 4017/2 = 0
<=> ( x - y )2 + 2( x + 5/2 )2 + 4017/2 = 0 (*)
Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\2\left(x+\frac{5}{2}\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-y\right)^2+2\left(x+\frac{5}{2}\right)^2+\frac{4017}{2}\ge\frac{4017}{2}>0\forall x,y\)
Tức là (*) sai
=> Không có giá trị x, y thỏa mãn
ngón cái + ngón trỏ trên bàn tay ( cái đốt: trên ngón cái có 2 đốt trên ngón trỏ có 3 đốt vậy 2 ngón + lại tức các đốt đó cộng lại = 5)
hihi
mik ik
vớ vẩn :v