tìm xy thuộc z biết x+y+xy=40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
271-[(-43)+271+(-13)] = 56
40.(45-135)-40.(45+65)=-8000
32x+41=35-(-70) => x=2
tìm x thuộc z,y thuộc z biết:(x-1)(xy-5)=5 Chịu
`a)xy+5x+y=4`
`=>x(y+5)+y+5=9`
`=>(y+5)(x+1)=9`
Vì `x,y in ZZ`
`=>x+1,y+5 in ZZ`
`=>x+1,y+5 in Ư(9)={+-1,+-3,+-9}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
`b)xy+14+2y+7x=0`
`=>y(x+2)+7(x+2)=0`
`=>(x+2)(y+7)=0`
`=>` \(\left[ \begin{array}{l}x=-2\\y=-7\end{array} \right.\)
`c)xy+x+y=2`
`=>x(y+1)+y+1=3`
`=>(x+1)(y+1)=3`
Vì `x,y in ZZ`
`=>x+1,y+1 in ZZ`
`=>x+1,y+1 in Ư(3)={+-1,+-3}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
Có xy + x + y = 40
\(\Rightarrow\)x(1+y) + 1 + y = 41
\(\Rightarrow\)(x+1).(y+1) = 41
Ta có trường hợp:
(x+1) = 1 ; (y+1) = 41
\(\Rightarrow\)x = 0 ; y = 40 ( loại )
(x+1) = -1 ; (y+1) = -41
\(\Rightarrow\)x = -2 ; y = -42 ( loại )
Tự chia tiếp trường hợp
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)
a,Ta có:\(xy+x=3\)
\(\Leftrightarrow x\left(y+1\right)=3\)
Vì x,y thuộc Z \(\hept{\begin{cases}x\\y+1\end{cases}}\in Z\)
\(\Rightarrow x;y+1\inƯ\left(3\right)\)
\(\Rightarrow x;y+1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\y+1=3\Rightarrow y=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y+1=-3\Rightarrow y=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\y+1=1\Rightarrow y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\y+1=-1\Rightarrow y=-2\end{cases}}\)
a) \(x+y=xy\)\(\Leftrightarrow xy-x-y=0\)\(\Leftrightarrow x\left(y-1\right)-y+1=1\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
Lập bảng giá trị ta có:
\(x-1\) | \(-1\) | \(1\) |
\(x\) | \(0\) | \(2\) |
\(y-1\) | \(-1\) | \(1\) |
\(y\) | \(0\) | \(2\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(0;0\right)\)hoặc \(\left(2;2\right)\)
b) \(xy-x-y=2\)\(\Leftrightarrow x\left(y-1\right)-y+1=3\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=3\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=3\)
Lập bảng giá trị ta có:
\(x-1\) | \(-1\) | \(-3\) | \(1\) | \(3\) |
\(x\) | \(0\) | \(-2\) | \(2\) | \(4\) |
\(y-1\) | \(-3\) | \(-1\) | \(3\) | \(1\) |
\(y\) | \(-2\) | \(0\) | \(4\) | \(2\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là \(\left(0;-2\right)\), \(\left(-2;0\right)\), \(\left(2;4\right)\), \(\left(4;2\right)\)
a: =>x(y+1)+y+1=11
=>(x+1)(y+1)=11
=>(x+1;y+1) thuộc {(1;11); (11;1); (-1;-11); (-11;-1)}
=>(x,y) thuộc {(0;10); (10;0); (-2;-12); (-12;-2)}
b: y là số nguyên
=>5x-3 chia hết cho 2x+4
=>10x-6 chia hết cho 2x+4
=>10x+20-26 chia hết cho 2x+4
=>-26 chia hết cho 2x+4
mà x nguyên
nên 2x+4 thuộc {2;-2;26;-26}
=>x thuộc {-1;-3;11;-15}
a) xy-3x=-19
⇒ x(y-3)=-19
⇒ x và (y-3) là Ư(19)
⇒ x ϵ {-1;1;-19;19} và y-3 ϵ {19;-19;1;-1}
⇒ (x;y) ϵ {(-1;22);(1;-16);(-19;4);(19;2)}
b) 3x+4y-xy=16
⇒ 4y-xy+3x-12=4
⇒ y(4-x)-3(4-x)=4
⇒ (4-x)(y-3)=4
⇒ (4-x) và (y-3) là Ư(4)
⇒ (4-x) ϵ {-1;1;-2;2;-4;4} và y-3 ϵ {-4;-4;-2;2;-1;1}
⇒ (x;y) ϵ {(5;-1);(3;-1);(6;1);(2;5);(8;2);(0;4}
ta có
x+y+xy=41
\(\Rightarrow\)x+y+xy+1=41
\(\Rightarrow\)x(y+1)+(y+1)=41
\(\Rightarrow\)(x+1)(y+1)=41
Do x,y thuộc Z nên x+1,y+1 thuộc ước của 41
\(\Rightarrow\)(x,y)thuộc (1;40);(40;1);(-42;-2);(-2;-42)