2012+\(\frac{2012}{1+2}\)+\(\frac{2012}{1+2+3}\) +\(\frac{2012}{1+2+3+4}\) +......+\(\frac{2012}{1+2+3+...+2011}\)
giúp mình với hu hu help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét biểu thức phụ : \(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k}+\sqrt{k+1}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Áp dụng : \(\frac{1}{2.\sqrt{1}+1.\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+\frac{1}{5\sqrt{4}+4\sqrt{5}}+...+\frac{1}{2012\sqrt{2011}+2011\sqrt{2012}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}=1-\frac{1}{\sqrt{2012}}\)
A=\(\frac{1+\frac{2011}{2}+1+\frac{2010}{3}+1+...+\frac{1}{2012}+1+1}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{2013\left(\frac{1}{2}+...+\frac{1}{2013}\right)}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=2013
Mà 2013: 3 = 671
Vậy A : 3 dư 0 hay\(A⋮3\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
\(2012+\frac{2012}{1+2}+\frac{2012}{1+2+3}+.....+\frac{2012}{1+2+3+....+2011}\)
\(=\frac{2012}{\frac{1\left(1+1\right)}{2}}+\frac{2012}{\frac{2\left(2+1\right)}{2}}+\frac{2012}{\frac{3\left(3+1\right)}{2}}+.....+\frac{2012}{\frac{2011\left(2011+1\right)}{2}}\)
\(=\frac{4024}{1.2}+\frac{4024}{2.3}+\frac{4024}{3.4}+.....+\frac{4024}{2011.2012}\)
\(=4024\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)
\(=4024\left(1-\frac{1}{2012}\right)\)
\(=4024.\frac{2011}{2012}\)
\(=4022\)