Chứng tỏ rằng:\(\frac{3}{1^2\times2^2}+\frac{5}{2^2\times3^2}+\frac{7}{3^2\times4^2}+...+\frac{39}{19^2\times20^2}\)< 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2\times2}+\frac{1}{3\times3}+....+\frac{1}{20\times20}
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+.......+\frac{2}{18.19}+\frac{2}{19.20}.\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)=\frac{2.19}{20}=\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...-\frac{1}{19}+\frac{1}{20}\)
\(=1+\frac{1}{20}\)
\(=\frac{1}{20}\)
Dưới tử mik tính ra thôi. VD: 12 . 22 = 1.4; 22.32 = 4.9 các tử sau tương tự
\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
= \(\frac{4-1}{1.4}+\frac{9-4}{4.9}+\frac{16-9}{9.16}+...+\frac{100-81}{81.100}\)
= \(\frac{4}{1.4}-\frac{1}{1.4}+\frac{9}{4.9}-\frac{4}{4.9}+\frac{16}{9.16}-\frac{9}{9.16}\)+.....+\(\frac{100}{81.100}-\frac{81}{81.100}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
.........................................................
=> \(C=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
C = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
C = \(1-\frac{1}{100}
Cho biểu thức A= 11×2×3 + 12×3×4 + 13×
4×5 +...+ 118×19×20 . So sánh A với 14 .
Dương Đình Hưởng
cố lên mà k
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
\(\frac{3}{1^2x2^2}\)+\(\frac{5}{2^2x3^2}\)+...+\(\frac{39}{19^2x20^2}\)<1
=\(\frac{3}{1.4}\)+\(\frac{5}{4x9}\)+...+\(\frac{39}{361x400}\)<1
=1-\(\frac{1}{4}\)+\(\frac{1}{4}\)-...-\(\frac{1}{361}\)+\(\frac{1}{361}\)-\(\frac{1}{400}\)<1
vì 1-\(\frac{1}{400}\)<1 nên \(\frac{3}{1^2x2^2}\)+\(\frac{5}{2^2x3^2}\)+...+\(\frac{39}{39^2x40^2}\)<1
vậy..............................................