Trên cùng một nửa mặt phẳng có bờ chứa tia Om, vẽ 2 tia Ox và Ot sao cho góc mOx = 40 độ, góc mOt = 110 độ.
a)Chứng tỏ tia Ox nằm giữa hai tia Om, Ot.
b) Tính góc xOt .
c) Vẽ Oy là tia đối của tia Om . Chứng tỏ Ot là tia phân giác của góc xOy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOm}< \widehat{xOt}\)
nên tia Om nằm giữa hai tia Ox và Ot
b: Vì Om nằm giữa Ox và Ot
nên \(\widehat{xOm}+\widehat{tOm}=\widehat{xOt}\)
hay \(\widehat{mOt}=70^0\)
a, trên nửa mặt phẳng bờ chứa tia Ox có \(\widehat{xOt}\)= 40 độ, \(\widehat{xOy}\)=80 độ
Vì 40 độ<80 độ nên \(\widehat{xOt}\)<\(\widehat{xoy}\)
\(\Rightarrow\)tia Ot nằm giữa 2 tia Ox và Oy (1)
b,Vì tia Ot nằm giữa hai tia Ox và Oy
\(\Rightarrow\)\(\widehat{xOt}\)+\(\widehat{tOy}\)=\(\widehat{xOy}\)
40 độ +\(\widehat{tOy}\)=80 độ
\(\Rightarrow\)\(\widehat{tOy}\)=80 độ-40 độ
\(\Rightarrow\)\(\widehat{tOy}\)=40 độ
Ta thấy:
\(\widehat{tOy}\)=40 độ
\(\widehat{xOy=80}độ\)
40 độ< 80độ
\(\Rightarrow\)\(\widehat{tOy< xOy}\)
Ta thấy:
\(\widehat{xOt=40}độ\)
\(\widehat{tOy=40}độ\)\(\Rightarrow\)\(\widehat{xOt=tOy}\)(2)
40 độ=40 độ
Từ (1) và (2)
\(\Rightarrow\)Tia Ot là tia phân giác của \(\widehat{xOy}\)
d,Vì Ox và Oz là 2 tia đối nhau
\(\Rightarrow\)\(\widehat{zOy}\)và \(\widehat{xOy}\) là 2 góc kề bù
\(\Rightarrow\)\(\widehat{zOy+xOy=180độ}\)
\(\Rightarrow\)\(\widehat{zOy+80độ=180độ}\)
\(\Rightarrow\)\(\widehat{zOy=180độ-80độ}\)
\(\Rightarrow\)\(\widehat{zOy=100độ}\)
trên nửa mặt phẳng bờ cứa tia Oz có \(\widehat{zOm}\)=50độ,\(\widehat{zOy}\)=100độ
vì 50 độ <100 độ nên \(\widehat{zOm< zOy}\)
\(\Rightarrow\)tia Om nằm giữa 2 tia Oz và Oy
\(\Rightarrow\)\(\widehat{zOm+mOy=zOy}\)
\(\Rightarrow\)50 độ +\(\widehat{mOy}\)=100 độ
\(\Rightarrow\)\(\widehat{mOy}\)= 100 độ -50 độ
\(\Rightarrow\)\(\widehat{mOy=50}độ\)
a) trên cùng một nữa mặt phẳng có: xOt < xOy
=> Ot nằm giữa 2 tia Ox,Oy
b) vì Ot nằm giữa 2 tia Ox ,Oy:
ta có: xOt + tOy = xOy
=> tOy = xOy - xOt (1)
thay: xOy=80' ; xOt=40' vào (1)
ta có: tOy = 80 - 40
=> tOy = 40' (2)
ta có: xOt = 40' (3)
từ (2) và (3) :
=> xOt = tOy
c) trên cùng 1 nửa mặt thẳng