K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

CD vuông góc SA

CD vuông góc AD

=>CD vuông góc (SAD)

b: \(SD=\sqrt{a^2+a^2}=a\sqrt{2}\)

 

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.a). Tính khoảng cách từ điểm S đến mp(ABCD).b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.e). Tính góc giữa đường thẳng SC và mp(ABCD).f). Tính góc...
Đọc tiếp

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.
a). Tính khoảng cách từ điểm S đến mp(ABCD).
b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.
c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.
e). Tính góc giữa đường thẳng SC và mp(ABCD).
f). Tính góc giữa đường thẳng SC và mp(SAB).
g). Tính góc giữa đường thẳng SC và mp(SAD).
h). Tính góc hợp bởi hai mặt phẳng (SBD) và (ABCD).
i). Tính góc hợp bởi hai mặt phẳng (SBC) và (ABCD).
j). Tính khoảngcách từ điểm A đến mp(SBC).
k). Tính khoảng cách từ điểm A đến mp(SCD).
l). Tính khoảng cách từ điểm A đến mp(SBD).
m). Tính khoảng cách giữa hai đường thẳng chéo nhau BD và SC

0
30 tháng 4 2022

Có : AC vuông góc với BD (hình vuông ABCD)

       SA vuông góc với BD ( do SA vuông góc với mp ABCD)

=> BD vuông góc với mp SAC...

22 tháng 2 2021

+ SA⊥(ABCD)⇒SA⊥BDSA⊥(ABCD)⇒SA⊥BD (1)

+ ABCD là hình vuông ⇒AC⊥BD⇒AC⊥BD (2)

+ Từ (1) và (2) suy ra BD⊥(SAC)⇒BD⊥SCBD⊥(SAC)⇒BD⊥SC

22 tháng 2 2021
Mình không biết.

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

20 tháng 12 2017

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Chọn A

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

3: BC vuông góc SAB

=>AE vuông góc BC

mà AE vuông góc SB

nên AE vuông góc (SBC)

=>AE vuông góc SC

4: (SB;(SAC))=(SB;SD)=góc DSB

\(SD=\sqrt{SA^2+AD^2}=2a;SB=2a;DB=a\sqrt{2}\)

\(cosDSB=\dfrac{4a^2+4a^2-2a^2}{2\cdot2a\cdot2a}=\dfrac{3}{4}\)

=>góc DSB=41 độ

a: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=căn 3

=>góc SDA=60 độ

10 tháng 5 2023