Giúp mình 2 câu này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này trong SGK thì tra google thì nhanh hơn đó bạn *ý kiến riêng*
Chúc bạn học tốt! :3
a: AB/AC=5/6
=>HB/HC=25/36
=>HB/25=HC/36=k
=>HB=25k; HC=36k
AH^2=HB*HC
=>25k*36k=30^2
=>900k^2=900
=>k=1
=>x=25cm; y=25cm
b: AB/AC=3/4
=>HB/HC=9/16
=>x/y=9/16
=>x/9=y/16=(x+y)/(9+16)=125/25=5
=>x=45cm; y=80cm
b.
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+3x-1}+x\right)=\lim\limits_{x\rightarrow-\infty}\left(\dfrac{3x-1}{\sqrt{x^2+3x-1}-x}\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\left(\dfrac{3-\dfrac{1}{x}}{-\sqrt{1+\dfrac{3}{x}-\dfrac{1}{x^2}}-1}\right)=\dfrac{3-0}{-1-1}=-\dfrac{3}{2}\)
d.
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^2+3x}{\sqrt{4x^4+2x^2}+3x^2-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2+\dfrac{3}{x}}{\sqrt{4+\dfrac{2}{x^2}}+3-\dfrac{1}{x^2}}\)
\(=\dfrac{2+0}{\sqrt{4+0}+3-0}=\dfrac{2}{5}\)
7:
a: \(P=\left(1:\dfrac{x-x+1}{\sqrt{x}+\sqrt{x-1}}-\dfrac{x-1-2}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)
\(=-\dfrac{\left(\sqrt{x}-\sqrt{2}\right)}{\sqrt{x}}\)
b: Khi x=3-2căn 2 thì \(P=-\dfrac{\sqrt{2}-1-\sqrt{2}}{\sqrt{2}-1}=\dfrac{1}{\sqrt{2}-1}=\sqrt{2}+1\)
a.
\(\lim\left(\sqrt[3]{n^3+2}-\sqrt[]{n^2+n}\right)=\lim\left(\sqrt[3]{n^3+2}-n+n-\sqrt[]{n^2+n}\right)\)
\(=\lim\left(\dfrac{2}{\sqrt[3]{\left(n^3+2\right)^2}+n\sqrt[3]{n^3+n}+n^2}-\dfrac{n}{n+\sqrt[]{n^2+n}}\right)\)
\(=\lim\left(\dfrac{2}{\sqrt[3]{\left(n^3+2\right)^2}+n\sqrt[3]{n^3+2}+n^2}-\dfrac{1}{1+\sqrt[]{1+\dfrac{1}{n}}}\right)\)
\(=0-\dfrac{1}{1+1}=-\dfrac{1}{2}\)
b.
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{x+2}+\sqrt[]{3x-2}-2x}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{x+2}-2+\sqrt[]{3x-2}-2-2x+4}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{x-2}{\sqrt[]{x+2}+2}+\dfrac{3\left(x-2\right)}{\sqrt[]{3x-2}+2}-2\left(x-2\right)}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\sqrt[]{x+2}+2}+\dfrac{3}{\sqrt[]{3x-2}+2}-2\right)=-1\)