Cho đơn thức: 3.(a+1/2).x^4.y^2 ( với a là hằng số khác 0)
Tìm giá trị của a để đơn thức không dương với mọi giá trị của x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cho \(A=\left(a-7\right)x^8y^{10}\)
Theo đầu bài ta có: \(x^8>0;y^{10}>0\)
để \(A>0\)
\(\Rightarrow a-7>0\)
\(\Rightarrow a>7\)
b) Theo đầu bài ta có: \(x^8>0;y^{10}>0\)
để A<0
=> a -7 < 0
=> a < 7
Với mọi x, y khác 0 ta có
\(x^4>0\)
\(y^4>0\)
=> \(x^4.y^4>0\)
=> A > 0 \(\forall x,y\ne0\)
a) Ta có: \(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\)
\(=x^4y^4\)
b) Bậc của đơn thức là 8
a: A=2/3*3/2*xy^2*x=x^2y^2
b: Bậc là 4
c: Khi x=-1 và y=2 thì A=(-1)^2*2^2=4
d: A=(xy)^2>0 khi x<>0 và y<>0
\(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\)
Ta có : \(a^2;\left(\frac{1}{a}\right)^2\ge0\forall a\Rightarrow3\left(a^2+\left(\frac{1}{a}\right)^2\right)\ge0\forall a\)
\(x^2;y^4;z^6\ge0\forall x;y;z\)
=> \(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\ge0\)
=> A luôn nhận giá trị không âm với mọi x, y, z
Để A = 0 => Ít nhất một giá trị = 0
=> Hoặc x = 0 ; y = 0 ; z = 0 thì A = 0
tk đi dag âm nek
Bạn k cho mình nhé mình đang âm nek