cho n thuộc Z chứng minh \(n^3+2\)không chia hết cho 2016
ai giải hộ mk xong mk sẽ tick ngay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. n không chia hết cho 3 suy ra n = 3k +1 hoặc n = 3k +2.
- nếu n = 3k +1 thì 5n + 1 = 5(3k +1) +1 = 15k + 6 ⋮ 3.
- nếu n = 3k +2 thì 5n + 2 = 5(3k + 2) +2 = 15k + 12 ⋮ 3
2. p là số nguyên tố lớn hơn 3 nên p sẽ có dạng 6k + 1 hoặc 6k + 5.
nếu p là 6k + 1 thì p + 2 = 6k + 3 ⋮ 3, không là số nguyên tố
do đó p có dạng 6k+5, khi đó p + 1 = 6k : 6 ⋮ 6.
3.
x(1-y) + 2(1-y) = 5
(x+2)(1-y) = 5
xét các trường hợp : x + 2 = 1; 1 - y = 5 và x + 2 = 5, 1 - y =1
4. ta có: n\(^2\) + 3 = (n+1)(n-1) + 4 ⋮ (n-1) khi 4 ⋮ (n-1), khi đó (n-1) \(\in\) Ư(4) .
k 2 k kieu gi
a+4b chia het cho 13
=>a+4b=13k (k nguyen)
a=13k-4b
10.a=130k-40b
10.a+b=130k-39b=13(10k-3b) chia het cho 13
5n+1 chia het cho 7=> 5n+1=7k
n=7z+4
Giải:
Ta có a chia cho 72 dư 24
\(\Rightarrow a=72m+24\)
\(\Leftrightarrow a=2\left(36m+12\right)\) \(⋮\) 2
hay : \(a=3\left(24m+8\right)⋮3\)
hay: \(a=6\left(12m+4\right)⋮6\)
Vậy: \(a\) chia hết cho 2;3 và 6
Bài 2: Ta có: 60.n+45 = 15.4.n+15.3
= \(15\left(4n+3\right)\) \(⋮\) \(15\)
Lại có: 60.n+45 = \(30.2.n+30+15\)
\(=30.\left(2n+1\right)+15\)
Do 30.(2n+1) \(⋮\) 30 mà 15 \(⋮̸\)30
\(̸\)\(\Rightarrow30.\left(2n+1\right)+15\) \(⋮̸\) 30
hay: \(60.n+45\) \(⋮̸\) \(30\)
Vậy: 60.n+45 chia hết cho 15 nhưng ko chia hết cho 30.
Ta có:
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Do \(n\left(n-1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vì n là số nguyên nên n có các dạng \(5k;5k+1;5k+2;5k+3;5k+4\)
Với \(n=5k\Rightarrow n^5-n=5k\left(25k^2-1\right)\left(25k^2+1\right)⋮5\)
Với \(n=5k+1\) thì \(n-1=5k+1-1=5k\Rightarrow n^5-n⋮5\)
Với \(n=5k+2\) thì \(n^2+1=\left(5k+2\right)^2+1=25k^2+20k+5⋮5\Rightarrow n^5-n⋮5\)
Với \(n=5k+3\) thì \(n^2+1=\left(5k+3\right)^2+1=25k^2+30k+10⋮5\Rightarrow n^5-n⋮5\)
Với \(n=5k+4\) thì \(n+1=5k+5⋮5\Rightarrow n^5-n⋮5\)
Mà \(\left(2;5\right)=1\Rightarrowđpcm\)
Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right).\)
Vì (n-1), n là 2 số nguyên liên tiếp nên \(n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)hay \(n^5-n⋮2\)(1)
Mặt khác \(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Nhận thấy \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)(tích của 5 số nguyên liên tiếp); \(5n\left(n-1\right)\left(n+1\right)⋮5\)
Suy ra: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)hay \(n^5-n⋮5\)(2)
Từ (1) và (2) kết hợp với \(\left(2;5\right)=1\)Suy ra \(n^5-n⋮10\)
Cách này thực chất cũng gần giống bài của Cool Kid, nhưng lập luận để chia hết cho 5 thì hơi khác
P/S : Đây là ACC phụ nên đừng ti ck cho câu trả lời này :))
Ta có n.(n+1)(n+2) là tích 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 3
Với n hoặc n+2 chia hết cho 3 thì n.(n+2)(n+7) sẽ chia hết cho 3
Với n+1 chia hết cho 3 thì n+1+6 chia hết cho 3 ( vì 6 chia hết cho 3 )
nên n+7 chia hết cho 3 suy ra n.(n+2)(n+7) sẽ chia hết cho 3
Vậy n.(n+2)(n+7 chia hết cho 3 với mọi n
Nếu p nguyên tố mà > 3 =>p= 3k+1 hoặc p=3k+2
nếu p=3k+1 => p+2=3k+1+2=3k+3 mà 3k+3 > 3 => p+2 là hợp số ( loại )
=> p=3k+2 . Nếu p=3k+2 => p+1=3k+1+2=3k+3 =>p+1 là hợp số
=> p+1 chia hết cho 2 ma (2;3)=1 => p+1 chia hết cho 6
Vì n là số tự nhiên nên sảy ra hai trường hợp
+ n là số lẻ thì n = 2k + 1
=> (2k + 1 + 2)(2k + 1 + 5) = (2k + 3)(2k + 6) = (2k + 3)2(k + 3) chia hết cho 2
+ n là số chẵn thì n = 2k
=> (2k + 2)(2k + 5) = 2(k + 1)(2k + 5) chia hết cho 2
1111...1(27 số 1) chia hết cho 3 vì tổng các chữ số là 27 mà 27 chia hết cho 3
chia hết cho 9 vì tổng các chữ số la 27 mà 27 chia hết cho 9
Một số chia hết đồng thời cho 3 và 9 nên chia hết cho 27
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
bạn k mk nhé mình đang bị âm
tk mk đi đag âm nek