K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
29 tháng 11 2023

a)

948 – 429 + 479

= 519 + 479 

= 998

424 : 2 x 3 

= 212 x 3 

= 636

b)

750 – 101 x 6 

= 750 – 606

= 144

100 : 2 : 5 

= 50 : 5 

= 10

c)

998 – (302 + 685)

= 998 – 987 

= 11

(421 – 19) x 2 

= 402 x 2 

= 804

HQ
Hà Quang Minh
Giáo viên
27 tháng 11 2023

a) \(250 + 250 × 2 = 250 + 500 = 750 \\ (250 + 250) × 2 = 500 × 2 = 1 000\)

b)\( 750 – 50 × 5 = 750 – 250 = 500\\ (750 – 50) × 5 = 700 × 5 = 3 500\)
c) \(210 × 4 – 4 × 210 = 840 – 840 = 0\\ 3 × (270 : 9) × 0 = 0\)

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

8 tháng 9 2023

Bài 1 :

a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)

\(\Rightarrow M=-2x^2y^2\)

Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)

\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)

\(\Rightarrow M=-2.2.3=-12\)

b) \(N=xy.\sqrt[]{5x^2}\)

\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)

\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)

Khi \(x=-2< 0;y=\sqrt[]{5}\)

\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)

2:

Tổng của 4 đơn thức là;

\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)

=>Khi x=-6 và y=15 thì A=0

 

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

14 tháng 12 2019

421 – 200 x 2 =  421 - 400

                       =       21

27 tháng 1 2019

\(A=\left|x-101\right|-101\)

\(\left|x-101\right|\ge0\)

\(\Rightarrow\left|x-101\right|-101\ge-101\)

\(\Rightarrow A\ge101\)

\(\Rightarrow MIN_A=101\Leftrightarrow\left|x-101\right|=0\)

\(\Rightarrow x=101\)

vay_

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

11 tháng 4 2022

a) Tại x=-1

\(\Rightarrow x^5-5=\left(-1\right)^5-5=-6\)

11 tháng 4 2022

\(a,\)Thay \(x=-1\) vào \(x^5-5\)

\(\Rightarrow\left(-1\right)^5-5=-6\)

\(b,\) 

+ TH1:

Thay \(x=1\) vào \(x^2-3x-5\)

\(\Rightarrow1^2-3.1-5=-7\)

+TH2:

Thay \(x=-1\) vào \(x^2-3x-5\)

\(\Rightarrow\left(-1\right)^2-3.\left(-1\right)-5=-1\)

25 tháng 8 2021

a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)

\(ĐTXR\Leftrightarrow x=4\)

b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

\(ĐTXR\Leftrightarrow x=1\)

c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

a: Ta có: \(A=-x^2-8x+1\)

\(=-\left(x^2+8x-1\right)\)

\(=-\left(x^2+8x+16-17\right)\)

\(=-\left(x+4\right)^2+17\le17\forall x\)

Dấu '=' xảy ra khi x=-4

b: Ta có: \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1