\(\text{Tìm các số nguyên dương x, y, z thỏa mãn: 3x²-9y²+4z²+6y²z²=243}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Ta có:
\(\left\{{}\begin{matrix}4x+y+2z=4\\3x+6y-2z=6\end{matrix}\right.\)
\(\Rightarrow\left(4x+y+2z\right)+\left(3x+6y-2z\right)=4+6=10\)
\(\Leftrightarrow7x+7y=10\)
\(\Leftrightarrow x+y=\dfrac{10}{7}\)
Do x, y nguyên dương nên không có x, y, z thoả mãn đề bài.
Ta có:
\(8x+8y+8z< 8x+9y+10z\)
\(\Rightarrow x+y+z< \frac{100}{8}< 13\)
\(\Rightarrow Gt\Leftrightarrow11< x+y+z< 13\)
Mà x+y+z nguyên dương \(\Rightarrow x+y+z=12\)
Ta có hệ: \(\hept{\begin{cases}x+y+z=12\left(1\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Nhân 2 vế của (1) với 8 ta đc:
\(\hept{\begin{cases}8x+8y+8z=96\left(3\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Trừ theo vế của (2) cho (3) ta đc:\(y+2z=4\left(4\right)\).
Từ \(\left(4\right)\Rightarrow z=1\)(vì nếu \(z\ge2\), thì do\(y\ge1\Rightarrow y+2z\ge4\),Mâu thuẫn)
Với \(z=1\Rightarrow y=2;x=9\)
Vậy...
Do các số x,y,zx,y,z nguyên dương nên
x+y+z>11 suy ra x+y+z≥12
Có
100=8(x+y+z)+(y+2z)≥96+(y+2z)
Suy ra
4≥y+2z≥3
Tức là
y+2z ∈ {3;4}
Theo đề bài thì
8x+9y+10z=100
Số y là số chẵn .
Tức là y+2z cũng là số chẵn .
Suy ra
y+2z=4 Hay y=2; z=1
Thế ngược lại vào
8x+9y+10z=100 tìm được x=9
Vậy (x,y,z)=(9,2,1)
Bước 1: Nhân cả hai tầm nhìn của phương pháp với -1 để chuyển các hạng tử âm sang tầm nhìn bên phải của dấu bằng, ta được:
9y² - 3x² - 4z² - 6y²z² = -243
Bước 2: Tách biến và rút gọn chúng lại:
3x² - 9y² + 6y²z² = 4z² + 243
Bước 3: Áp dụng bổ đề Fermat để giải phương trình:
Ta có:
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
Áp dụng công thức trên, ta có:
(2z - 3y)² + 3x² = (13)²
Vì x, y, z là các nguyên dương nên ta có 2z - 3y > 0, do đó ta có:
2z - 3y = 13
Như vậy, ta có hệ thống phương tiện:
2z - 3y = 13
3x² = 169 - (2z - 3y)²
Bước 4: Giải hệ phương trình:
Với 2z - 3y = 13, ta có thể giải được y và z theo x:
y = (2z - 13)/3
z = (3y + 13)/2
Thay vào phương trình 3x² = 169 - (2z - 3y)², ta được:
3x² = 169 - (2((3y + 13)/2) - 3y)² = 169 - 49y²
Từ đó, ta có:
y² = (169 - 3x²)/49
y là số nguyên dương, do đó chỉ có một số giá trị của x có thể làm cho y là số nguyên, đó là khi 169 - 3x² chia hết cho 49. Ta có:
3x² = 169 - 49k (với k là một số nguyên)
x² + 16k/3 = 169/3
Vì x là một số nguyên dương, nên 169/3 - 16k/3 phải là một số chính phương. Kiểm tra và tìm được:
169/3 - 16k/3 = 64
k = 15
Thay k = 15 vào phương trình 3x² = 169 - 49k, ta được:
x² = 64
x = 8
Bước 5: Kết luận:
Do đó các bộ số nguyên dương đối với phương trình là: (x, y, z) = (8, 1, 5) hoặc (x, y, z) = (8, 1, -6).
Do \(243\) ; \(3x^2-9y^2+6y^2z^2\) đều chia hết cho 3 \(\Rightarrow4z^2\) chia hết cho 3
\(\Rightarrow z\) chia hết cho 3 \(\Rightarrow z=3z_1\) với \(z_1\) nguyên dương
\(\Rightarrow3x^2-9y^2+36z^2_1+54y^2z_1^2=243\)
\(\Rightarrow x^2-3y^2+12z_1^2+18y^2z_1^2=81\)
Lý luận tương tự ta được \(x=3x_1\) với \(x_1\) nguyên dương
\(\Rightarrow9x_1^2-3y^2+12z_1^2+18y^2z_1^2=81\)
\(\Rightarrow3x_1^2-y^2+4z_1^2+6y^2z_1^2=27\) (1)
\(\Rightarrow3x_1^2+4z_1^2+y^2\left(6z_1^2-1\right)=27\)
Do \(x_1;z_1\) nguyên dương \(\Rightarrow x_1;z_1\ge1\)
\(\Rightarrow3x_1^2+4z_1^2+y^2\left(6z_1^2-1\right)\ge3+4+5y^2=7+5y^2\)
\(\Rightarrow7+5y^2\le27\Rightarrow y^2\le4\Rightarrow y\le2\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)
- Với \(y=1\) thế vào (1)
\(\Rightarrow3x_1^2+10z_1^2=28\)
Nếu \(z_1\ge2\Rightarrow3x_1^2+10z_1^2>28\) (ktm) \(\Rightarrow z_1=1\Rightarrow3x_1^2=18\) ko tồn tại \(x_1\) nguyên thỏa mãn
- Với \(y=2\) thế vào (1) \(\Rightarrow3x_1^2+28z_1^2=31\Rightarrow x_1=z_1=1\)
\(\Rightarrow x=z=3\)
Vậy có đúng 1 bộ số nguyên dương thỏa mãn là \(\left(x;y;z\right)=\left(3;2;3\right)\)