Chứng minh rằng :42/20. 24 +42/24 .28 +...+ 42/76. 80 < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\dfrac{4^2}{20.24}+\dfrac{4^2}{24.28}+...+\dfrac{4^2}{76.80}\)
A=\(\dfrac{16}{20.24}+\dfrac{16}{24.28}+...+\dfrac{16}{76.80}\)
A=4.[\(\dfrac{4}{20.24}+\dfrac{4}{24.28}+...+\dfrac{4}{76.80}\)]
A=4.\(\left[\dfrac{1}{20}-\dfrac{1}{24}+\dfrac{1}{24}-\dfrac{1}{28}+...+\dfrac{1}{76}-\dfrac{1}{80}\right]\)
A=4.\(\left[\dfrac{1}{20}+\dfrac{1}{24}-\dfrac{1}{24}+\dfrac{1}{28}-\dfrac{1}{28}+...+\dfrac{1}{78}-\dfrac{1}{78}-\dfrac{1}{80}\right]\)
A=4.\(\left[\dfrac{1}{20}-\dfrac{1}{80}\right]\)
A=4.\(\dfrac{3}{80}\)
A=\(\dfrac{3}{20}\)<1
=>A<1
Tick mink nha
Mọi người tk mình đi mình đang bị âm nè!!!!!!Ai tk mình mình tk lại nha !!!
Cái này thì....mình mù tịt
Vì chưa học!!!!
Ai đồng ý thì cho mình xin 1 k!!!
a) 57 + 28 = 85
24 + 67 = 91
46 + 39 = 85
b) 83 - 19 = 64
42 - 38 = 4
90 - 76 = 14
\(\begin{array}{*{20}{c}}{a)\,\,}\\{}\\{}\end{array}\begin{array}{*{20}{c}}{ + \begin{array}{*{20}{c}}{57}\\{28}\end{array}}\\\hline{\,\,\,\,85}\end{array}\) \(\begin{array}{*{20}{c}}{ + \begin{array}{*{20}{c}}{24}\\{67}\end{array}}\\\hline{\,\,\,\,91}\end{array}\) \(\begin{array}{*{20}{c}}{ + \begin{array}{*{20}{c}}{46}\\{39}\end{array}}\\\hline{\,\,\,\,85}\end{array}\)
\(\begin{array}{*{20}{c}}{b)\,\,}\\{}\\{}\end{array}\begin{array}{*{20}{c}}{ - \begin{array}{*{20}{c}}{83}\\{19}\end{array}}\\\hline{\,\,\,\,64}\end{array}\) \(\begin{array}{*{20}{c}}{ - \begin{array}{*{20}{c}}{42}\\{38}\end{array}}\\\hline{\,\,\,\,04}\end{array}\) \(\begin{array}{*{20}{c}}{ - \begin{array}{*{20}{c}}{90}\\{76}\end{array}}\\\hline{\,\,\,\,14}\end{array}\)
b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)
\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)
\(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)
______________________________________________
\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)
Từ (1) suy ra:
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)
A = 1/20 + 1/30 + 1/42
A = 1/4x5 + 1/5x6 + 1/6x7
A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7
A = 1/4 - 1/7
A = 3/28
Mà 1 = 28/28
Nên 3/28 < 28/28
Vậy A < 1
Ta có: \(\frac{4^2}{20.24}+\frac{4^2}{24.28}+...+\frac{4^2}{76.80}\)
\(=4.\left(\frac{4}{20.24}+\frac{4}{24.28}+...+\frac{4}{76.80}\right)\)
\(=4.\left(\frac{1}{20}-\frac{1}{24}+\frac{1}{24}-\frac{1}{28}+...+\frac{1}{76}-\frac{1}{80}\right)\)
\(=4.\left(\frac{1}{20}-\frac{1}{80}\right)=4.\frac{3}{80}=\frac{3}{20}< 1\)
Vậy \(\frac{4^2}{20.24}+\frac{4^2}{24.28}+...+\frac{4^2}{76.80}< 1\)