K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Ảnh bị lỗi không hiển thị được. Bạn xem lại

28 tháng 10 2020

600000000<1

28 tháng 10 2020

Cho mình xin cách làm đi

1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :))) 

19 tháng 12 2021

\(=\dfrac{x^4+x^3+x^2+5x^3+5x^2+5x-11x^2-11x-11+3x+21}{x^2+x+1}\)

Vậy: Đa thức dư là 3x+21

19 tháng 12 2021

\(=\left(x^4+x^3+x^2+5x^3+5x^2+5x-11x^2-11x-11+8x+21\right):\left(x^2+x+1\right)\\ =\left[x^2\left(x^2+x+1\right)+5x\left(x^2+x+1\right)-11\left(x^2+x+1\right)+8x+21\right]:\left(x^2+x+1\right)\\ =x^2+5x-11\left(\text{dư }8x+21\right)\)

15 tháng 1 2021

\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\)  và dư \(ax+b\)

=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)

Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5

=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\) 

=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1

15 tháng 1 2021

Giả sử đa thức bị chia là m (x)

Gia sử  thương là : q( x )

Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1

Suy ra , ta có : m( x ) =( x2 - 5x + 6 )                 q( x ) = ax + b

Đi tìm X

x2 - 5x + 6 = 0 

x2 - 2x - 3x + 6 = 0

 x( x - 2) - 3(x - 2) = 0

 ( x - 2)( x - 3) = 0

Vậy  x = 2 hoặc x = 3

Ta có  giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :

f( 2 ) = 5 

-> 2a + b = 5 ( 1)

Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó  ta được :

f( 3 ) = 7

-> 3a + b = 7 ( 2)

Từ ( 1  và  2) suy ra : a = 2 ; b = 1

Suy ra : f( x ) = ( x2 - 5x + 6 )      Thay số  q( x ) = 2x + 1

Vậy dư là 2x +1 

AH
Akai Haruma
Giáo viên
12 tháng 10

Lời giải:
$f(x)=x^{2009}+x^{2008}+1$

$=(x^{2009}-x^2)+(x^{2008}-x)+(x^2+x+1)$

$=x^2(x^{2007}-1)+x(x^{2007}-1)+(x^2+x+1)$

$=x^2[(x^3)^{669}-1]+x[(x^3)^{669}-1]+(x^2+x+1)$
$=x^2(x^3-1)[(x^3)^{668}+....+1]+x(x^3-1)[(x^3)^{668}+...+1]+(x^2+x+1)$

$=x^2(x-1)(x^2+x+1)[(x^3)^{668}+....+1]+x(x-1)(x^2+x+1)[(x^3)^{668}+...+1]+(x^2+x+1)$

$=x^2(x-1)(x^2+x+1)A(x)+x(x-1)(x^2+x+1)A(x)+(x^2+x+1)$
$=(x^2+x+1)[x^2(x-1)A(x)+x(x-1)A(x)+1]\vdots x^2+x+1$