K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>5x>1

=>x>1/5

b: =>3x-3<2

=>3x<5

=>x<5/3

c: =>2x-3x^2-x<15-3x^2-6x

=>x<15-6x

=>7x<15

=>x<15/7

28 tháng 8 2020

2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)

\(=2\left(x-2\right)^2-18\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy minA = - 18 <=> x = 2

b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)

\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy maxB = 27/4 <=> x = 3/2

28 tháng 8 2020

Sửa đề:x3-3x2-4x+12

a,x3-3x2-4x+12

=(x3-3x2)-(4x+12)

=x2(x-3)-4(x-3)

=(x2-4)(x-3)

b,x4- 5x2 +4

x4-4x2-x2+4

(x4-x2)-(4x2+4)

x2(x2-1)-4(x2-1)

(x2-4)(x2-1)

  

5 tháng 9 2020

Suka blyat

5 tháng 9 2020

a. 

\(5x^3+5=0\) 

\(5x^3=-5\)  

\(x^3=-1\)  

\(x^3=\left(-1\right)^3\)   

\(\Rightarrow x=-1\)   

b. 

\(2\left(x+5\right)-x^2-5x=0\)      

\(2x+10-x^2-5x=0\)  

\(-x^2-3x+10=0\)    

\(-x^2+5x-2x+10=0\)       

\(-x\left(x-5\right)-2\left(x-5\right)=0\)   

\(\left(x-5\right)\left(-x-2\right)=0\)  

\(\orbr{\begin{cases}x-5=0\\-x-2=0\end{cases}}\)  

\(\orbr{\begin{cases}x=5\\-x=2\end{cases}}\)  

\(\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)  

23 tháng 8 2020

a, \(A=x\left(x+y\right)-x\left(y-x\right)=x^2+xy-xy+x^2=2x^2\)

Thay x vào ta có : \(2\left(-3\right)^2=2.9=18\)

y bị lược bỏ rồi mà bạn hay chỗ x^2 + xy - xy + x^2 thay vào à ? lạ !?!

b, \(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)=8x^2+4xy+4xy+2y^2-y^2-2xy\)

\(=8x^2+6xy+y^2\)

Thay x = 1/2 ; y = -3/4 ta có : Tự thay nhé -> P/s 

a)

\(A=x.\left(x+y\right)-x.\left(y-x\right)\)

\(A=x^2+x.y-x.y+x^2\)

\(A=2.x^2\)

Thay x= -3 vào biểu thức A ta được ;

\(A=2.\left(-3\right)^2=2.9=18\)

b) \(B=4.x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)\)

\(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(2x+y\right)\)

\(B=\left(2x+y\right).\left(4x+2y-y\right)\)

\(B=\left(2x+y\right).\left(4x+y\right)\)

\(B=8x^2+2xy+4xy+y^2\)

\(B=8x^2+6xy+y^2\)

Thay \(x=\frac{1}{2}\) và \(y=\frac{-3}{4}\) vào biểu thức B ta được :

\(B=8.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}.\left(\frac{-3}{4}\right)+\left(\frac{-3}{4}\right)^2\)

\(B=2+\left(\frac{-9}{4}\right)+\frac{9}{16}=\frac{5}{16}\)

Bài 2 :

\(A=4\left(x-6\right)-5x\left(x+1\right)+8\left(x^2-x-2\right)\)

\(A=4x-24-5x^2-5x+8x^2-8x-16\)

\(A=-9x-40+3x^2\)

Thay x=-1 vào biểu thức A ta được :

\(A=-9.\left(-1\right)-40+3.\left(-1\right)^2\)

\(A=9-40+3=-28\)

Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt ^^

\(\)

6 tháng 10 2021

\(a,=\left(3x-5\right)\left(3x+3\right)=3\left(x+1\right)\left(3x-5\right)\\ b,=\left(5x-4-7x\right)\left(5x-4+7x\right)=\left(-2x-4\right)\left(12x-4\right)\\ =-8\left(x+2\right)\left(x-3\right)\\ c,=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\\ =\left(x+14\right)\left(3x-4\right)\\ d,=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\\ =\left(x+5\right)\left(5x-3\right)\\ e,=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\\ =\left(4x+7\right)\left(8x+11\right)\\ f,=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\\ =\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]\\ =\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\\ g,=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\\ =\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)

\(h,=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\\ =\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\\ =\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)

a: \(\left(3x-1\right)^2-16\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x+3\right)\left(3x-5\right)\)

\(=3\left(x+1\right)\left(3x-5\right)\)

b: \(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)

\(=\left(-2x-4\right)\left(12x-4\right)\)

\(=-8\left(x+2\right)\left(3x-1\right)\)

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
1 tháng 8 2019

Bài 1L

a) \(\left(x-7\right)\left(x+3\right)< 0\)

TH1:

\(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -3\end{cases}}}\)( loại )

TH2:

\(\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}\Leftrightarrow}-3< x< 7}\)( chọn )

Vậy \(-3< x< 7\)

1 tháng 8 2019

Bài 2:

a) \(\left(5x+8\right)-\left(2x-15\right)+21=2x-5\)

\(\Leftrightarrow5x+8-2x+15+21=2x-5\)

\(\Leftrightarrow5x-2x-2x=-5-21-8-15\)

\(\Leftrightarrow x=-49\)

Vậy ...

a: \(x^2-9-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)\left(1-x^2\right)\)

\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)

b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)

c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)

d: \(x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

e: \(3x^2-4x-4\)

\(=3x^2-6x+2x-4\)

\(=3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(3x+2\right)\)

g: \(x^4+64y^4\)

\(=x^4+16x^2y^2+64y^4-16x^2y^2\)

\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)

\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)

 

h: \(a^2+b^2+2a-2b-2ab\)

\(=a^2-2ab+b^2+2a-2b\)

\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)

i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)

\(=\left(x+1-y+3\right)^2\)

\(=\left(x-y+4\right)^2\)

k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\left(x-1\right)^2\)