Cho tam giác ABC có AB bằng 6 cm AC = 8cm BC = 10cm vẽ đường phân giác BI của tamgiác. Từ I hạ IH vuông góc BC H thuộc BC Gọi K là giao điểm của ABvà IH.com Chứng minh tam giác ABI bằng tam giác HBI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pythagore)
=> BC2 = 62 + 82
=> BC = \(\sqrt{6^2+8^2}\)
=> BC = \(\sqrt{100}\)= 10 (cm)
b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là phân giác \(\widehat{B}\))
Cạnh huyền BI chung
=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)
a) xét tam giác ABI và tam giác HBI có:
\(\widehat{BAI}\)= \(\widehat{BHI}\)(90 độ)
\(\widehat{B1}\)= \(\widehat{B2}\)( BI là tia phân giác của \(\widehat{ABC}\))
BI chung
=> tam giác ABI = tam giác HBI (cạnh huyền góc nhọn)
c) xét tam giác HIC cuông tại I có
HI là cạnh góc vuông
IC là cạnh huyền
vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất
=> IC > HI
Mà IA = IH (tam giác BAI = tam giác BHI)
=> AI < IC
a/ \(\Delta\)ABC vuông tại A: \(BC^2\)=\(AB^2\)+\(AC^2\)(Pytago)
\(\Rightarrow\)\(BC^2\)=\(6^2+8^2\)=100
\(\Rightarrow\)BC=10 cm
b/ Xét \(\Delta\)ABI và \(\Delta\)HBI
^ABI=^HBI(phân giác BI)
^BAI=^BHI(=90 độ)
BI (chung)
\(\Rightarrow\)\(\Delta\)ABI=\(\Delta\)HBI(cạnh huyền-góc nhọn)
c/ BA=BH(cặp cạnh tương ứng)
\(\Rightarrow\)B \(\varepsilon\)đường trung trực của AH(1)
IA=IH(cặp cạnh tương ứng)
\(\Rightarrow\)I \(\varepsilon\)đường trung trực của AH(2)
từ (1)và(2)
\(\Rightarrow\)BI là đường trung trực của AH
d/ \(\Delta\)vuông HIC:
HI<IC(cạnh góc vuông<cạnh huyền)
mà HI=IA(cặp cạnh tương ứng)
\(\Rightarrow\)IA<IC