K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì Tam giác `HIK` có `HI = HK`

`-> \text {Tam giác HIK cân tại H} ->`\(\widehat{I}=\widehat{K}\)

Xét Tam giác `HIM` và Tam giác `HKM` có:

`HI=HK (g``t)`

\(\widehat{I}=\widehat{K}\) `(CMT)`

`MI=MK (` vì `M` là trung điểm của `IK)`

`=> \text {Tam giác HIM = Tam giác HKM (c-g-c)}`

loading...

25 tháng 3 2023

Chứng minh vì sao MI=MK nx nha m, đề chỉ cho là M là trung điểm của IK thôi nên kh thể vt đây là gt đc :v

`\text {Xét Tam giác HIK: HI = HK}`

`-> \text {Tam giác HIK cân tại H}`

`->`\(\widehat{I}=\widehat{K}\)

Xét Tam giác `HIM` và Tam giác `HKM` có:

`HI = HK (g``t)`

\(\widehat{I}=\widehat{K} (\text {CMT})\) 

`MI = MK (\text {M là trung điểm của IK})`

`=> \text {Tam giác HIM = Tam giác HKM (c-g-c)}`

loading...

Xét ΔHIM và ΔHKM có

HI=HK

IM=KM

HM chung

=>ΔHIM=ΔHKM

29 tháng 12 2021

b: Xét ΔHIM và ΔHKM có

HI=HK

HM chung

IM=KM

Do đó: ΔHIM=ΔHKM

a: Xét ΔHIK có IN là phân giác

nên HN/NK=HI/IK=HK/IK(1)

Xét ΔHIK có KM là phân giác

nên HM/MI=HK/KI(2)

Từ (1) và (2) suy ra HN/NK=HM/MI

=>MN//IK

=>ΔHMN\(\sim\)ΔHIK

b: Ta có: HN/HI=NK/IK

=>HN/10=NK/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{HN}{5}=\dfrac{NK}{4}=\dfrac{HN+NK}{5+4}=\dfrac{10}{9}\)

Do đó: HN=50/9(cm)

Xét ΔHIK có MN//IK

nên MN/IK=HN/HK

\(\Leftrightarrow MN=\dfrac{50}{9}:10\cdot8=\dfrac{40}{9}\left(cm\right)\)

a: HK=12cm

 b: Xét ΔIHM vuông tại H và ΔIEM vuông tại E có

IM chung

\(\widehat{HIM}=\widehat{EIM}\)

Do đó:ΔIHM=ΔIEM

c: Ta có: ΔIHM=ΔIEM

nên IH=IE; MH=ME

=>IM là đường trung trực của EH

14 tháng 5 2022

a, Xét Δ IHK vuông tại H, có :

\(IK^2=IH^2+HK^2\) (định lí Py - ta - go)

=> \(13^2=5^2+HK^2\)

=> \(HK^2=144\)

=> HK = 12 (cm)

b, Xét Δ HIM và Δ EIM, có :

\(\widehat{HIM}=\widehat{EIM}\) (IM là tia phân giác \(\widehat{HIE}\))

IM là cạnh chung

\(\widehat{IHM}=\widehat{IEM}=90^o\)

=> Δ HIM = Δ EIM (g.c.g)

c, Ta có : Δ HIM = Δ EIM (cmt)

=> HI = EI

=> Δ HIE cân tại I

Ta có :

Δ HIE cân tại I

IM là tia phân giác \(\widehat{HIE}\)

=> IM ⊥ EH

a: Xét ΔIHM vuông tại H và ΔINM vuông tại N có

IM chung

\(\widehat{HIM}=\widehat{NIM}\)

Do đó: ΔIHM=ΔINM

b: ta có: ΔIHM=ΔINM

nên HM=NM

c: Ta có: HM=MN

mà MN<MK

nên HM<MK

Gọi G là trung điểm BC
Ta có:
góc HGM=180-góc HGB-góc MGC=180-góc ACB-DBC=120+DAC=góc HAK(do góc BAD=góc CAE=60 độ)
Mặt khác:
áp dụng t/c đường trung bình ta có:
GM=1/2BD=1/2AB=AH
GH=1/2AC=1/2AE=AK
=>tam giác HAK=tam giác MGH(c.g.c)
=>HK=HM(1)
Tương tự gọi J là trung điểm AC
Ta cũng suy ra được MK=HM(theo tam giác bằng nhau)(2)

=> Từ (1)(2) => Tam giác HKM là tam giác đều

a: Xét ΔHIK và ΔHNM có

HI/HN=HK/HM=5/2

góc H chung

=>ΔHIK đồng dạng với ΔHNM

b:

ΔHIK đồng dạng với ΔHNM

=>IK/NM=5/2

=>10/NM=5/2

=>NM=4cm

c: Xét ΔHIK và ΔHAI có

góc HIK=góc HAI(=góc HNM)

góc Hchung

=>ΔHIK đồng dạng với ΔHAI