Tính thể tích khối tròn xoay sinh ra do hình phẳng giới hạn bởi các đường y=x^2-3x+2;y=x+2 quay quanh ox
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt hoành độ giao điểm:
\(\dfrac{x^2}{4}=2x\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
\(\Rightarrow V=\pi\left(\int\limits^8_0\left(2x\right)^2dx-\int\limits^8_0\left(\dfrac{x^2}{4}\right)^2dx\right)=\dfrac{4096\pi}{15}\)
V=\(\pi\int_0^8\left(\dfrac{x^2}{4}-2x\right)^2dx\) = \(\dfrac{1024}{15}\pi\)
em nghĩ như này ạ
\(V=\pi\int\limits^4_0\left(\dfrac{e^x}{4}\right)^2dx=\pi\int\limits^4_0\dfrac{e^{2x}}{16}dx=\dfrac{\pi}{32}.e^{2x}|^4_0=\dfrac{\pi}{32}\left(e^8-1\right)\)
Chọn D.
Thể tích khối tròn xoay được giới hạn bởi các đường y = x3, trục Ox, x = -1, x = 1 một vòng quanh trục Ox là:
Đáp án B.
Thể tích khối tròn xoay là:
V o x = π ∫ 0 2 1 x − 3 2 d x = − π x − 3 0 2 = π − π 3 = 2 π 3
Chọn D
D quay xung quanh trục Oy
Ta có: y = ( x - 2 ) 2 ⇔ x - 2 = ± y ⇔ x = 2 ± y
V = π ∫ 0 4 2 + y 2 - 2 - y 2 dy = 8 π . ∫ 0 4 y dy = 8 π . 2 3 y 3 2 | 0 π = 128 π 3 đ v t t
Thể tích vật thể tròn xoay cần tìm là
V = π ∫ 0 2 x 2 dy = π ∫ 0 2 y 4 dy = 32 π 5
Đáp án B
Pt hoành độ giao điểm: \(x^2-3x+2=x+2\Leftrightarrow x^2-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(x^2-3x+2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(\Rightarrow V=\pi\left(\int\limits^4_0\left(x+2\right)^2dx-\int\limits^1_0\left(x^2-3x+2\right)^2dx-\int\limits^4_2\left(x^2-3x+2\right)^2dx\right)\)
\(=\pi\left(\dfrac{208}{3}-\dfrac{5}{6}-\dfrac{14}{3}\right)=\dfrac{383\pi}{6}\)
Lấy tích phân từ 0 đến 4 (x^2-3x+2)^2-(x+2)^2 tất cả nhân pi đc không ạ