K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD
=>AB/CD=OA/OC=OB/OD

=>5/CD=1/2

=>CD=10cm và OA*OD=OB*OC

b: Xét ΔOHA vuông tại H và ΔOKC vuông tại K có

góc AOH=góc KOC

=>ΔOHA đồng dạng với ΔOKC

=>OH/OK=OA/OC=1/2

c: AE/AD+CF/BC

=AE/AD+1-BF/BC

=1

a: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD
=>AB/CD=OA/OC=OB/OD

=>5/CD=1/2

=>CD=10cm và OA*OD=OB*OC

b: Xét ΔOHA vuông tại H và ΔOKC vuông tại K có

góc AOH=góc KOC

=>ΔOHA đồng dạng với ΔOKC

=>OH/OK=OA/OC=1/2

c: AE/AD+CF/BC

=AE/AD+1-BF/BC

=1

14 tháng 2 2022

-Câu b, c bị lỗi rồi bạn.

14 tháng 2 2022

b) -Xét △AOH có: AB//CD (gt).

\(\Rightarrow\dfrac{AO}{OC}=\dfrac{OH}{OK}\) (định lí Ta-let).

\(\Rightarrow\dfrac{OH}{OK}=\dfrac{4}{8}=\dfrac{1}{2}\).

c) -Xét △ADC có: OE//DC (gt).

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AO}{AC}\) (định lí Ta-let).

-Xét △ABC có: OF//AB (gt).

\(\Rightarrow\dfrac{AO}{AC}=\dfrac{BF}{BC}\) (định lí Ta-let).

Mà \(\dfrac{AE}{AD}=\dfrac{AO}{AC}\) nên \(\dfrac{AE}{AD}=\dfrac{BF}{BC}\)

\(\Rightarrow\dfrac{AE}{AD}+\dfrac{CF}{BC}=\dfrac{BF}{BC}+\dfrac{CF}{BC}=\dfrac{BC}{BC}=1\)

a: Xét ΔAOB và ΔCOD có

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB\(\sim\)ΔCOD

Suy ra: AB/CD=OA/OC=OB/OD

=>5/CD=1/2

hay CD=10(cm)

Ta có: OA/OC=OB/OD

nên \(OA\cdot OD=OB\cdot OC\)

6 tháng 2 2022

c. -Xét △ADC có: OM//DC (gt).

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)

\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).

-Xét △BDC có: ON//DC (gt).

\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)

\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)

-Từ (1), (2),(3) suy ra:

\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)

\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

a: Xét ΔAOB và ΔCOD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB∼ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)

\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

 

2 tháng 4 2019

Mình thấy câu c khó quá

Nếu cậu lm đc giúp mk nha