K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

a) $y_M=\frac{-x_M^2}{2}=\frac{-(-3)^2}{2}=\frac{-9}{2}$

Đường thẳng $OM$ có dạng: $y=ax$

$\Rightarrow y_M=ax_M\Leftrightarrow \frac{-9}{2}=a.(-3)$

$\Rightarrow a=\frac{3}{2}$

Vậy ĐT $OM$ là: $y=\frac{3}{2}x$

b) Gọi PTĐT $CE$ có dạng $y=ax+b$

PT hoành độ giao điểm giữa $(P)$ và $CE$ là:

$\frac{-x^2}{2}-ax-b=0$

$\Leftrightarrow x^2+2ax+2b=0(*)$

$(P)$ và $CE$ cắt nhau tại 2 điểm có hoành độ $-1;2$ nghĩa là PT $(*)$ nhân $x=-1$ và $x=2$ là nghiệm

\(\Rightarrow \left\{\begin{matrix} 1-2a+2b=0\\ 4+4a+2b=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-1}{2}\\ b=-1\end{matrix}\right.\)

Vậy PTĐT $CE$ có dạng $y=-\frac{1}{2}x-1$

8 tháng 11 2023

Gọi (d'): y = ax + b

Do (d') // (d) nên a = -1/2

⇒ (d'): y = -x/2 + b

Do (d') cắt trục hoành tại điểm có hoành độ là 3 nên thay x = 3; y = 0 vào (d') ta có:

-3/2 + b = 0

⇔ b = 3/2

Vậy (d'): y = -x/2 + 3/2

19 tháng 2 2021

a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)

\(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)

\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)

- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .

<=> \(\Delta>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

\(\Leftrightarrow m\ne4\)

Vậy ...

b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv

 

a) Phương trình hoành độ giao điểm là: 

\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)

\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m^2-8m+16>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

mà \(\left(m-4\right)^2\ge0\forall m\)

nên \(m-4\ne0\)

hay \(m\ne4\)

Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt

6 tháng 2 2021

- Thay x = -1 và x = 2 vào hàm số ( P ) ta được :

\(\left[{}\begin{matrix}y=1\\y=4\end{matrix}\right.\)

=> Đường thẳng AB đi qua 2 điểm ( -1; 1 ) ; ( 2 ; 4 )

- Gọi đường thẳng AB có dạng  y = ax + b

- Thay hai điểm trên lần lượt vào phương trình đường thẳng ta được :

\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\)

 \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy phương trình đường thẳng AB có dạng : y = x + 2 .

b: f(-2)=-1/2*(-2)^2=-1/2*4=-2

=>M(-2;-2)

f(1)=-1/2*1^2=-1/2

=>N(1;-1/2)

Gọi (d): y=ax+b là phương trình đường thẳng cần tìm

Theo đề, ta có hệ: -2a+b=-2 và a+b=-1/2

=>a=1/2 và b=-1

=>y=1/2x-1

c: (D)//y=1/2x-1 nên (D): y=1/2x+b

PTHĐGĐ là:

-1/2x^2-1/2x-b=0

=>x^2+x+2b=0

Δ=1^2-4*1*2b=-8b+1

Để (P) cắt (D) tại một điểm duy nhất thì -8b+1=0

=>b=1/8

4 tháng 4 2021

answer-reply-image

trả lời r 

chúc bn hok tốt

4 tháng 4 2021

khoan đã cậu ơi, tớ có hỏi gì về cạnh góc vuông đâu cậu?

b) Gọi (d): y=ax+b

Vì (d)//y=x-3 nên a=1

Vậy: (d): y=x+b

Thay x=1 vào y=x+1, ta được:

y=1+1=2

Thay x=1 và y=2 vào (d), ta được:

b+1=2

hay b=1

Vậy: (d): y=x+1

a) Thay x=-1 vào (P), ta được:

\(y=\left(-1\right)^2=1\)

Thay x=2 vào (P), ta được:

\(y=2^2=4\)

Vậy: M(-1;1) và N(2;4)

Gọi (d):y=ax+b là ptđt đi qua hai điểm M và N

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-3\\-a+b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy: (d): y=x+2