a) Chứng Minh rằng n thuộc N, n>1 ta có: \(\frac{1}{n-1}\)-\(\frac{1}{n}\)>\(\frac{1}{n^2}\)>\(\frac{1}{n}\)-\(\frac{1}{n+1}\)
b) áp dụng ý (a) hãy chứng minh : \(\frac{99}{100}\)>\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+.........+\(\frac{1}{100^2}\)>\(\frac{99}{202}\)
a) Ta có:
\(\frac{1}{n-1}-\frac{1}{n}=\frac{n-\left(n-1\right)}{n\left(n-1\right)}=\frac{1}{n\left(n-1\right)}>\frac{1}{n.n}=\frac{1}{n^2}\left(1\right)\)
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}< \frac{1}{n.n}=\frac{1}{n^2}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\frac{1}{n\left(n-1\right)}>\frac{1}{n^2}>\frac{1}{n\left(n+1\right)}\)
Hay \(\frac{1}{n-1}-\frac{1}{n}>\frac{1}{n^2}>\frac{1}{n}-\frac{1}{n+1}\) (Đpcm)