K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2015

gọi ba số tự nhiên liên tiếp là a,a+1,a+2

ta có a+(a+1)+(a+2) = 3a +3 chia hết cho 3

vì 3a chia hết cho3 , 3 chia hết cho 3 

suy ra ba số tự nhiên liên tiếp chia hết cho 3

26 tháng 6 2015

c)

gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)

ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)

                                       \(=2.2.k.k+4k\)

                                       \(=4k^2+4k\)

mà \(4k^2+4k\) chia hết cho 4

=>\(2k.\left(2k+2\right)\) chia hết cho 4

20 tháng 9 2015

a)Goi 2 so tu nhien lien tiep la a;a+1

Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2

Neu a la so le:a+1 la so le

Vay tich2 so tu nhien lien tiep chia het cho 2

23 tháng 9 2021

hai số tự nhiên liên tiếp thì phải có 1 số chẵn và 1 số lẻ mà tích của 1 số chẵn với 1 số lẻ thì là 1 số chẵn 
 

23 tháng 9 2021

\(a,\) Trong hai số tự nhiên liên tiếp luôn có một số chẵn và lẻ do đó tích hai số tự nhiên liên tiếp là:

\(\text{chẵn . lẻ = chẵn}\) \(\xrightarrow[]{}\) \(\text{Chia hết cho 2}\)

\(b,\) Trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3 và ba số tự nhiên liên tiếp có thể là \(3k;3k+1;3k+2\) do đó tích ba số tự nhiên liên tiếp là:

\(3k.\left(3k+1\right).\left(3k+2\right)\xrightarrow[]{}\text{Chia hết cho 3}\) 

6 tháng 11 2017

Đáp án:

Vì bốn số liên tiếp phải có 1 số chia hết cho 4 nên tích đó chia hết cho 4.

Vd: 1*2*3*4 thì có 4 chia hết cho 4. thử tính: 1*2*3*4=24, 24/4=6 nên chia hết cho 4.

Vd: 7*8*9*10 thì có 8 chia hết cho 4. thử tính: 7*8*9*10=5040, 5040/4=1260 nên chia hết cho 4.

Vd: 27*28*29*30 thì có 28 chia hết cho 4. thử tính: 27*28*29*30=657220, 657220/4=164430 nên chia hết cho 4.

6 tháng 11 2017

Trong 4 số tự nhiên liên tiếp sẽ có 1 số \(⋮\) 2, 1 số \(⋮\) 3, 1 số \(⋮\) 4.

Mà 2x 3x 4= 24.

=> Tích 4 số tự nhiên liên tiếp \(⋮\) 24.

18 tháng 7 2016

a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))

Nếu m chia hết cho 2 thì ta có điều cần chứng minh

Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2

b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))

Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3

=> ĐPCM

21 tháng 10 2015

Gọi 3 stn liên tiếp là: a;a+1;a+2

Ta có : a+a+1+a+2=3a+(1+2)=3a+3

Mà 3a chia hết cho 3 ; 3 chia hết cho 3 

Nên 3a+3 chia hết cho 3

Vậy tổng 3 stn liên tiếp chia hết cho 3

21 tháng 10 2015

Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2 

ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3 

Vậy 3 số tự nhiên liên tiếp chia hết cho 3

14 tháng 7 2018

Gọi 3 số tự nhiên đó là:  \(n-1;\)\(n;\)\(n+1\)  (\(n\ge1;\)\(n\in N\))

Tích 3 số là:   \(A=\left(n-1\right)n\left(n+1\right)\)

  • Nếu:  \(n=3k\)thì:   \(A⋮3\)
  • Nếu:  \(n=3k+1\)thì:  \(n-1=3k+1-1=3k\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)
  • Nếu:   \(n=3k+2\)thì:  \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)

Vậy tích 3 số tự nhoeen liên tiếp luôn chia hết cho 3

14 tháng 7 2018

trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2           (1)

trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 3               (2)

(2; 3) = 1                             (3)

(1)(2)(3) => tích của 3 số tự nhiên liên tiếp chia hết cho 6

11 tháng 8 2023

a) Ta có: 

\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)

Nên \(10^{10}-1\) ⋮ 9

b) Ta có:

\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)

Mà: \(1+0+0+...+2=3\) ⋮ 3

Nên: \(10^{10}+2\) ⋮ 3