cho tam giác ABC có 3 góc nhọn,đường cao BD và CE cắt nhau tại H.
a)CMR:tam siacs AEC đồng dạng với tam giác ADB.
b)HB.HD=HE.HC.
c)Nối DE;nếu BC=a,AB=AC=b.Tính DE theo a,b.
mn chỉ mik vs.đề thi hsg đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ hình
a xét tam giác ABD và tam giác ACE có :
chung góc BAC
góc BDA = góc CEA = 90 độ
=> tam giác ABD đồng dạng tam giác ACE (g.g)
b, xét tam giác EHB và tam giác DHC có
góc BDC = góc CFB = 90 độ
góc BHF = góc DHC ( đối đỉnh )
=> tam giác EHB đồng dạng với tam giác DHC (g.g)
=> \(\frac{HB}{HC}=\frac{HE}{HD}\)
=> HD . HB = HE . HC ( đpcm )
c, vì tam giác ABD đồng dạng với tam giác ACE ( câu a)
=> \(\frac{AB}{AC}=\frac{AD}{AE}\) => \(\frac{AE}{AC}=\frac{AD}{AB}\)
xét tam giác ADE và tam giác ABC có
chung góc BAC
\(\frac{AE}{AC}=\frac{AD}{AB}\)
=> tam giác ADE đồng dạng với tam giác ABC ( c.g.c)
=> góc ADE = góc ABC ( đpcm)
a. -Xét △BEH và △CDH có:
\(\widehat{BEH}=\widehat{CDH}=90^0\)
\(\widehat{BHE}=\widehat{CHD}\)(đối đỉnh)
\(\Rightarrow\)△BEH∼△CDH (g-g).
\(\Rightarrow\dfrac{BH}{CH}=\dfrac{EH}{DH}\).
-Xét △HED và △HBC có:
\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
\(\dfrac{BH}{CH}=\dfrac{EH}{DH}\left(cmt\right)\)
\(\Rightarrow\)△HED∼△HBC (c-g-c).
b. -Ta có: \(\widehat{AED}+\widehat{DEC}=90^0\) (kề phụ).
\(\widehat{DBC}+\widehat{DCB}=90^0\) (△DBC vuông tại D).
Mà \(\widehat{DEC}=\widehat{DBC}\)(△HED∼△HBC)
\(\Rightarrow\)\(\widehat{AED}=\widehat{DCB}\)
-Xét △AED và △ACB có:
\(\widehat{AED}=\widehat{ACB}\) (cmt)
\(\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AED∼△ACB (g-g).
c. -Có: \(\widehat{EAC}=45^0\) (gt) ; △AEC vuông tại E (AB⊥CE tại E).
\(\Rightarrow\)△AEC vuông cân tại E.
\(\Rightarrow AE=AC\sqrt{2}\)
-Ta có: △AED∼△ACB (cmt)
\(\Rightarrow\dfrac{ED}{BC}=\dfrac{AE}{AC}=\dfrac{AC\sqrt{2}}{AC}=\sqrt{2}\)
\(\Rightarrow\dfrac{ED}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow ED=2\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xet ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{DAB}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)
Suy ra: \(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)
a) Xét \(\Delta ADB\) và \(\Delta AEC\) co:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(\widehat{A}\) CHUNG
Suy ra: \(\Delta ADB~\Delta AEC\)
b) Xét \(\Delta EHB\) và \(\Delta DHC\) có:
\(\widehat{HEB}=\widehat{HDC}=90^0\)
\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
suy ra: \(\Delta EHB~\Delta DHC\)
\(\Rightarrow\)\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\Rightarrow\)\(HB.DH=HC.HE\)
lÀM NHƯ NÀO ĐÓ