Cho đường tròn (O) đường kính BC, điểm M thuộc đường tròn (M khác C và B). Tiếp tuyến tại C của đường tròn (O) cắt tia BM tại N. Lấy A là điểm chính giữa cung nhỏ MC, tia CA cắt tia BM tại D. E là giao điểm AB và MC
a) Tính số đo của góc BMC
b) Chứng minh tứ giác ADME nội tiếp đường tròn
c) Chứng minh DM/DN=BM/BN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMB=góc ACB=90 độ
=>BM vuông góc DA và AC vuông góc DB
góc DMH+góc DCH=90+90=180 độ
=>DMHC nội tiếp
Xét ΔHMA vuông tại M và ΔHCB vuông tại C có
góc MHA=góc CHB
=>ΔHMA đồng dạng với ΔHCB
=>HM/HC=HA/HB
=>HM*HB=HA*HC
b: góc DBM=góc CBM=1/2*sđ cung CM
góc MBA=1/2*sđ cung MA
mà sđ cung CM=sđ cung MA
nên góc DBM=góc ABM
=>BM là phân giác của góc DBA
Xét ΔBDA có
BM vừa là đường cao, vừa là phân giác
=>ΔBDA cân tại B
d: Xét ΔMAK vuông tại M và ΔMDH vuông tại M có
MA=MD
góc MAK=góc MDH
=>ΔMAK=ΔMDH
=>MK=MH
Xét tứ giác AKDH có
M là trung điểm chung của AD và KH
AD vuông góc KH
=>AKDH là hình thoi
1:
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>AM vuông góc BC tại M
ΔCAB vuông tại A có AM là đường cao
nên CA^2=CM*CB
2:
D,M,B,E cùng thuộc (O)
=>DMBE nội tiếp
=>góc MDE+góc MBE=180 độ
=>góc CDM=góc CBE
Xét ΔCDM và ΔCBE có
góc CDM=góc CBE
góc DCM chung
Do đó: ΔCDM đồng dạng với ΔCBE
=>CD/CB=CM/CE
=>CD*CE=CM*CB
3: ΔOAK cân tại O
mà OH là đường cao
nên OH là phân giác của góc AOK
Xét ΔCAO và ΔCKO có
OA=OK
góc COA=góc KOC
OC chung
Do đó: ΔCAO=ΔCKO
=>góc CKO=90 độ
=>CK là tiếp tuyến của (O)
a: góc AMB=1/2*sđ cung AB=90 độ
góc FEB+góc FMB=180 độ
=>FMBE nội tiếp
b: Xét ΔKAB có
AM,KE là đường cao
KE cắt AM tại F
=>F là trực tâm
=>BF vuông góc AK
a: góc ACB=góc AEB=1/2*180=90 độ
=>CB vuông góc FA,AE vuông góc FB
góc FCD+góc FED=180 độ
=>FCDE nội tiếp
b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có
góc CDA=góc EDB
=>ΔDCA đồng dạng với ΔDEB
=>DC/DE=DA/DB
=>DA*DE=DB*DC
a: góc BMC=1/2*180=90 độ
b: góc CAB=1/2*sđ cung AB=90 độ
góc CMB=1/2*sđ cung BC=90 độ
Vì góc DAE+góc DME=90+90=180 độ
=>ADME nội tiếp