Cho \(A=\frac{10n+14}{2n+4}\)
a,Tìm n để A có giá trị tự nhiên
b, tìm n để A rút gọn được
c, Tìm n để A lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: chia 10n cho 5n-3 như bình thường ta được dư là 6
Để A có giá trị nguyên thì \(10n⋮5n-3\) Do đó 6 phai chia hết cho 3n+2
<= >5n-3\(\in u\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\\)
Lập bảng
5n-3= | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n= | -0.6 | 0 | 0.2 | 0.4 | 0.8 | 1 | 1.2 | 1.8 |
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)
Ta có bảng sau:
5n - 3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -0,6 | 0 | 0,2 | 0,4 | 0,8 | 1 | 1,2 | 1,8 |
Mà n thuộc Z => n = { 0 ; 1 }
b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất => \(\frac{6}{5n-3}\)lớn nhất
=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z
=> 5n - 3 = 2 => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)
Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:
\(A=2+3=5\)
Vậy giá trị lớn nhất của A là 5 khi x = 1
a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)
\(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
\(=2+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)
\(\Rightarrow\frac{6}{5n-3}\in Z\)
\(\Rightarrow6\)chia hết cho\(5n-3\)
\(\Rightarrow5n-3\inƯ\left(6\right)\)
Ta có bảng sau :
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 |
5n | 4 | 2 | 5 | 1 | 6 | 0 |
n | 0,8 | 0,4 | 1 | 0,2 | 1,2 | 0 |
Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)
a) \(A=\frac{2n-7}{n-2}=2\)
\(\Rightarrow A=\left(\frac{2\left(n-2\right)-3}{n-2}\right)=2\)
\(\Rightarrow n-2-3=2\)
\(\Rightarrow n-5=2\)
\(\Rightarrow n=2-5\)
\(\Rightarrow n=-3\)
b) Để \(max\frac{2n-7}{n-2}\Rightarrow max\left\{2n-7;n-2\right\}\)
\(\Rightarrow n=9\)
c) Để \(min\frac{2n-7}{n-2}\Rightarrow min\left\{2n-7;n-2\right\}\)
\(\Rightarrow n=-9\)
d) Để là phân số tối giản thì: \(\left(2n-7\right)-2\left(n-2\right)=1\)
\(\Rightarrow\left(2n-7\right)-\left(2n-4\right)=1\)
\(\Rightarrow n=3\)
d) Để A rút gọn được thì \(ƯCLN\left(2n-7,n-2\right)\ne1\)
\(\Rightarrow n-5\)không phải là số nguyên tố.
\(\Rightarrow n=\left\{1;-1;3;-3;7;-7;9;-9\right\}\)
a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)
+ \(4n+3=11\Leftrightarrow n=2\)
+ \(4n+3=187\Leftrightarrow n=46\)
+ \(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))
Vậy n=2, 46
b) A tối giản khi 187 và 4n+3 có ƯCLN =1
\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)
\(n\ne17m+12\left(m\inℕ\right)\)
c) \(n=156\Rightarrow A=\frac{17}{19}\)
\(n=165\Rightarrow A=\frac{89}{39}\)
\(n=167\Rightarrow A=\frac{139}{61}\)
a) \(A=\frac{5\left(2n+4\right)-6}{2n+4}=5-\frac{6}{2n+4}\)
A thuộc N <=> 6/ 2n+4 thuộc N và 6/2n+4 <5 <=> 2n+4 thuộc Ư(6) sao cho 6/2n+4 <5
nếu 2n+4=1 => 6/1=6 >5 => loại
nếu 2n+4=6 => 6/6=1 <5 => lấy <=> 2n=2 <=> n=1( t/m đk)
nếu 2n+4=2 => 6/2=3 <5 => lấy <=> 2n= 2-4 => loại
nếu 2n+4=3 => 6/3=2 <5 => lấy <=> 2n=3-4 => loại
=> n=1
b) \(A=\frac{5\left(2n+4\right)-6}{2n+4}=5-\frac{6}{2n+4}\)rút gọn được khi 2n+4 là ước của 6 thôi. k cần nhỏ hơn 5. giải như trên
c) với n thuộc N => \(n\ge0\Leftrightarrow2n\ge0\Leftrightarrow2n+4\ge4\Rightarrow\frac{6}{2n+4}\le\frac{6}{4}\Leftrightarrow\frac{-6}{2n+4}\ge-\frac{6}{4}\Leftrightarrow5-\frac{6}{2n+4}\ge\frac{7}{2}\)=> phân số này chỉ có thể tìm được giá trị nhỏ nhất, k có lớn nhất