Cho △ABC cân tại A ( AB = AC) . M là trung điểm của BC
a/ Chứng minh : △ AMB = △ AMC
b/ Chứng minh AM là tia phân giác của △ABC
c/ So sánh MA và MB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
Xét ΔABC có AE/AB=AF/AC
nên FE//BC
a) Xét ΔAMB và ΔAMC có:
AB=AC(gt)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác góc A)
AM chung
=> ΔAMB=ΔAMC(c.g.c)
b) Ta có: ΔAMB=ΔAMC(cmt)
=> \(\widehat{AMB}=\widehat{AMC}\)
Mà 2 góc này là 2 góc kề bù
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
=> AM⊥BC
c) Ta có: ΔAMB=ΔAMC(cmt)
=> BM=MC( 2 cạnh tương ứng)
=> M là trung điểm BC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đo: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>MH=MK và góc HMA=góc KMA
=>MA là phân giác của góc HMK và ΔHMK cân tại M
a) Xét ΔAMB và ΔAMC có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔAMB=ΔAMC(c-c-c)
b) Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
c) Ta có: ΔABM=ΔACM(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
hay \(\widehat{HAM}=\widehat{KAM}\)
Xét ΔAHM và ΔAKM có
AH=AK(gt)
\(\widehat{HAM}=\widehat{KAM}\)(cmt)
AM chung
Do đó: ΔAHM=ΔAKM(c-g-c)
⇒\(\widehat{HMA}=\widehat{KMA}\)(hai góc tương ứng)
mà tia MA nằm giữa hai tia MH và MK
nên MA là tia phân giác của \(\widehat{HAK}\)(đpcm)
d) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{B}=\widehat{C}\)
Ta có: AH+HB=AB(H nằm giữa A và B)
AK+KC=AC(K nằm giữa A và C)
mà AB=AC(gt)
và AH=AK(gt)
nên HB=KC
Xét ΔHBM và ΔKCM có
HB=KC(cmt)
\(\widehat{B}=\widehat{C}\)(cmt)
BM=MC(M là trung điểm của BC)
Do đó: ΔHBM=ΔKCM(c-g-c)
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
`a,` \(\text{Xét Tam giác AMB và Tam giác AMC có:}\)
`AB=AC (\text {vì Tam giác ABC cân tại A})`
\(\widehat{B}=\widehat{C}\) `(\text {vì Tam giác ABC cân tại A})`
`MB=MC (g``t)`
`=> \text {Tam giác AMB = Tam giác AMC (c-g-c)}`
`b,` \(\text{Vì Tam giác AMB = Tam giác AMC (a)}\)
`->`\(\widehat{BAM}=\widehat{CAM}\) `(\text {2 góc tương ứng})`
`-> \text {AM là tia phân giác của Tam giác ABC}`
`c,` câu này mình chịu ;-; nếu mà được mình sẽ bổ sung sau!