K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

1) Để phương trình có hai nghiệm trái dấu thì

\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.

Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.

2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.

Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.

3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.

4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).

Dấu "=" xảy ra khi x=16/5 (nhận).

Vậy minA=7/16 tại m=16/5.

29 tháng 12 2023

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{3}\ne-\dfrac{1}{m}\)

=>\(m^2\ne-3\)(luôn đúng)

\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m\cdot\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+3\right)=5+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{2m^2+5m}{m^2+3}-2=\dfrac{2m^2+5m-2m^2-6}{m^2+3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)

\(x+y=\dfrac{3}{m^2+3}\)

=>\(\dfrac{2m+5+5m-6}{m^2+3}=\dfrac{3}{m^2+3}\)

=>\(7m-1=3\)

=>7m=4

=>m=4/7(nhận)

12 tháng 2 2022

\(a,\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m^2\\x-my=m+1\end{matrix}\right.\)

\(\Leftrightarrow m^2x-x=2m^2-m-1\Leftrightarrow x\left(m^2-1\right)=2m^2-m-1\)

\(ycầuđềbài\Leftrightarrow m^2-1\ne0\Leftrightarrow m\ne\pm-1\)

\(b,\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2-m-1}{m^2-1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{m^2-1}=\dfrac{2m+1}{m+1}=2+\dfrac{-2}{m+1}\\y=mx-2m=\dfrac{m\left(2m+1\right)-2m^2-2m}{m+1}=\dfrac{-m}{m+1}=-1+\dfrac{1}{m+1}\end{matrix}\right.\)

\(\left(x;y\right)\in Z\Leftrightarrow\left\{{}\begin{matrix}m\ne\pm1\\m+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\\m+1\inƯ\left(1\right)=\left\{1;-1\right\}\end{matrix}\right.\)

\(\Rightarrow m=0;m=-2\)

NV
5 tháng 4 2021

\(ac=-10< 0\Rightarrow\) phương trình luôn có 2 nghiệm pb trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-10\end{matrix}\right.\)

Kết hợp hệ thức Viet và đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1-x_2=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-m+8}{2}\\x_2=\dfrac{-m-8}{2}\end{matrix}\right.\)

Thế vào \(x_1x_2=-10\)

\(\Rightarrow\left(\dfrac{-m+8}{2}\right)\left(\dfrac{-m-8}{2}\right)=-10\)

\(\Leftrightarrow m^2-64=-40\Rightarrow m^2=24\)

\(\Rightarrow m=\pm2\sqrt{6}\)

19 tháng 2 2021

Bạn dùng thanh này

để đánh rõ hơn nha  :vvvv .

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Ta có $x+my=2\Rightarrow x=2-my$. Thay vào PT $(2)$:

$m(2-my)-3my=3m+3$

$\Leftrightarrow -y(m^2+3m)=m+3$

$\Leftrightarrow -ym(m+3)=m+3(*)$

Để hệ PT ban đầu có nghiệm thì $(*)$ có nghiệm $y$

Điều này xảy ra khi $m(m+3)\neq 0\Leftrightarrow m\neq 0;-3$

Khi đó:

$y=\frac{m+3}{-m(m+3)}=-\frac{1}{m}$

$x=2-my=3$

Như vậy:

$y=8x^2$

$\Leftrightarrow \frac{-1}{m}=72\Leftrightarrow m=-72$

Vậy........