K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2022

Nối DM và AB kéo dài cắt nhau tại E

Do BM song song và bằng 1 nửa AD \(\Rightarrow BM\) là đường trung bình tam giác ADE

\(\Rightarrow AE=2BE\Rightarrow d\left(B;\left(SMD\right)\right)=\dfrac{1}{2}d\left(A;\left(SMD\right)\right)\)

Lại có: \(\left\{{}\begin{matrix}BN\cap\left(SMD\right)=S\\NS=\dfrac{1}{3}BS\end{matrix}\right.\) \(\Rightarrow d\left(N;\left(SMD\right)\right)=\dfrac{1}{3}d\left(B;\left(SMD\right)\right)=\dfrac{1}{6}d\left(A;\left(SMD\right)\right)\)

Từ A kẻ AF vuông góc MD (F thuộc MD), từ A kẻ AH vuông góc SF (H thuộc SF)

\(\Rightarrow AH\perp\left(SMD\right)\Rightarrow AH=d\left(A:\left(SMD\right)\right)\)

Hệ thức lượng trong tam giác vuông ADE:

\(\Rightarrow AF=\dfrac{AD.AE}{DE}=\dfrac{AD.2AB}{\sqrt{AD^2+\left(2AB\right)^2}}=\dfrac{8a\sqrt{17}}{17}\)

\(SA=\sqrt{SD^2-AD^2}=a\sqrt{21}\)

Hệ thức lượng: \(AH=\dfrac{SA.AF}{\sqrt{SA^2+AF^2}}=...\)

\(\Rightarrow d\left(N;\left(SMD\right)\right)=\dfrac{1}{6}AF=...\)

NV
19 tháng 4 2022

undefined

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.a). Tính khoảng cách từ điểm S đến mp(ABCD).b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.e). Tính góc giữa đường thẳng SC và mp(ABCD).f). Tính góc...
Đọc tiếp

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.
a). Tính khoảng cách từ điểm S đến mp(ABCD).
b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.
c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.
e). Tính góc giữa đường thẳng SC và mp(ABCD).
f). Tính góc giữa đường thẳng SC và mp(SAB).
g). Tính góc giữa đường thẳng SC và mp(SAD).
h). Tính góc hợp bởi hai mặt phẳng (SBD) và (ABCD).
i). Tính góc hợp bởi hai mặt phẳng (SBC) và (ABCD).
j). Tính khoảngcách từ điểm A đến mp(SBC).
k). Tính khoảng cách từ điểm A đến mp(SCD).
l). Tính khoảng cách từ điểm A đến mp(SBD).
m). Tính khoảng cách giữa hai đường thẳng chéo nhau BD và SC

0
24 tháng 2 2022

bẹn tk thay chữ vô thoy là đc:

undefined

Gọi  là trung điểm của  . Gọi  là giao điểm của  và 
  
 nên  .
 .
 Ta kẻ  , mặt khác  .
 Ta kẻ  .   .
 Ta có   .
 Ta có  là hình chữ nhật,  .
  
 Ta có  .
   ,
    .
 Vậy  .

16 tháng 4 2017

13 tháng 2 2017

14 tháng 3 2018

Đáp án B

Gọi K = C D ∩ A B  khi đó BC là đường trung bình trong tam giác KAD nên KB =a 

Gọi  I = K N ∩ A M

Ta có

I M I A = M N K B = 1 2 ⇒ d M = 1 2 d A  

Do C E = 1 2 A D  nên Δ A C D  vuông tại C

Dựng A H ⊥ N C ,

d A = A H = N A . A C N A 2 + A C 2 = a 66 11  

Do đó  d M = a 66 22

11 tháng 1 2017

Chọn A.

Xác định được

Vì M là trung điểm SA nên 

Kẻ AK  ⊥ DM và chứng minh được AK  (CDM) nên 

Trong tam giác vuông MAD tính được 

16 tháng 11 2018

Xác định được 

Vì M là trung điểm SA nên

Kẻ  và chứng minh được  nên 

Trong ∆  vuông MAD tính được 

Chọn A.

21 tháng 5 2019