K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

A B C H M G D

a) xét tam giác vuông AHB và tam giác vuông AHC có:

AH chung

góc B = góc C (tam giác ABC cân)

=> \(\Delta ABH=\Delta ACH\left(ch-gn\right)\)

b) ta có: AH là đường cao nên AH cũng là trung tuyến

hay BH=CH

lại có: AM là trung tuyến

=> AM=MC

mà 2 đường giao nhau tại G nên G là trọng tâm của \(\Delta ABC\)

25 tháng 4 2021

xét ΔABH và ΔACH có:

\(\widehat{ACB}\)=\(\widehat{ABC}\)(ΔABC cân tại A)

\(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của\(\widehat{BAC}\))

AB=AC(ΔABC cân tại A)

⇒ΔABH=ΔACH(g-c-g)

xét ΔABM và ΔCEM có:

\(\widehat{AMB}\)=\(\widehat{EMC}\)(2 góc đối đỉnh)

AM=MC(M là trung điểm của AC)

BM=ME(giả thuyết)

⇒ΔABM=ΔCEM(c-g-c)

\(\widehat{BAM}\)=\(\widehat{MCE}\)(2 góc tương ứng)

⇒CE//AB(điều phải chứng minh)

\(\widehat{BAH}\)=\(\widehat{CKH}\)(2 góc sole trong)(1)

Mà \(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))(2)

Từ (1) và (2) ⇒\(\widehat{CAH}\)=\(\widehat{CKH}\)

⇒ΔACK cân tại C(điều phải chứng minh)

vì AH là tia phân giác của \(\widehat{BAC}\)

Mà ΔABC cân tại A

⇒AH là đường trung tuyến

Mặc khác M là trung điểm của AC nên BM là đường trung tuyến

Mà G là giao điểm của BM và AH 

⇒G là trọng tâm của ΔABC

xét ΔABH và ΔKCH có:

BH=CH(AH là đường trung tuyến)

\(\widehat{ABH}\)=\(\widehat{KCH}\)(2 góc sole trong)

\(\widehat{AHB}\)=\(\widehat{KHC}\)=\(90^o\)

⇒ΔABH=ΔKCH(g-c-g)

Mà ΔABH=ΔACH

⇒ΔKCH=ΔACH

xét ΔAHC có:

AH+HC>AC(bất đẳng thức tam giác) 

Mà AH=3GH; AC=CK(ΔKCH=ΔACH)

⇒3GH+HC>CK(điều phải chứng minh) 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

DO đó: ΔAHB=ΔAHC

Suy ra: HB=HC

hay H là trung điểm của BC

b: Xét ΔMAD và ΔMBH có 

\(\widehat{MAD}=\widehat{MBH}\)

MA=MB

\(\widehat{AMD}=\widehat{BMH}\)

Do đó:ΔMAD=ΔMBH

Suy ra: AD=BH

hay BH=2,5cm

Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

hay AH=6(cm)

6 tháng 2 2022

bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với

27 tháng 8 2021

a, Xét \(\Delta ABH\)và \(\Delta ACH\)ta có :

AB = AC ( gt )

\(H=90^o\)

AH cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)

b, Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)

\(\Rightarrow BH=CH\)(2 cạnh t/ung)

\(\Rightarrow\)H là trung điểm BC

\(\Rightarrow AH\)là đường trung tuyến của \(\Delta ABC\)

Mà G là giao điểm của 2 đường trung tuyến AH và BM 

Suy ra : G là trọng tâm của \(\Delta ABC\)

c, Áp dụng định lý Pytago cho \(\Delta ABH\)vuông tại H ta có :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2+18^2=30^2\)

\(=AH^2=30^2-18^2\)

\(\Rightarrow AH^2=576\)

\(\Rightarrow AH=\sqrt{576}=24\)

Ta có : \(AG=\frac{2}{3}AH\)

\(\Rightarrow AG=\frac{2}{3}\cdot24\)

\(\Rightarrow AG=16\)

d, Xét \(\Delta ABC\)có H là trung điểm BC . Mà \(DH\perp AC\)( gt )

\(\Rightarrow\)D là trung điểm AB ( t/c đường trung bình của tam giác )

Xét \(\Delta ABC\)có CG là trung tuyến

Mà CD là trung truyến

=> CD và CG trùng nhau 

=> C,G,D thẳng hàng ( đpcm ) 

27 tháng 8 2021

A B C H M G D