tìm n thuộc N để phân số 2n+15/n+1 là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2n + 15 chia hết cho n + 1
Hay : ( 2n + 2 ) + 13 chia hết cho n + 1
Mà : 2n + 2 chia hết cho n +1
Suy ra : 13 chia hết cho n + 1
n + 1 thuộc ước của 13
Nên : n + 1 thuộc ( 1; 13 )
: n thuộc ( 0 ; 12 )
2n+15/n+1 là số tự nhiên
=>2n+15 phải chia hết cho n+1
2n+2-2+15
2(n+1)+13 =>n+1 E Ư(13)={1;-1;13;-13}
n+1=1 =>n=0
n+1=-1 =>n=-2
n+1=13 =>n=12
n+1=-13 =>n=-14
Vậy n={0;-2;12;-14}
bài ta có : 2n+15 chia hết n+1 suy ra 2n+15=n+1+n+1+13chia hết n+1 suy ra n+1 thuộc Ư của 13 suy ra
Ư của 13 =[1,13] suy ra n =[0;12]
vay n=[0;12]
\(\frac{2n+15}{n+1}=\frac{2n+2+13}{n+1}=\frac{2\left(n+1\right)+13}{n+1}=2+\frac{13}{n+1}\)
Để \(2+\frac{13}{n+1}\) là số nguyên <=> \(\frac{13}{n+1}\) là số nguyên
=> n + 1 thuộc Ư(13) = { - 13; - 1; 1; 13 }
=> n = { - 14 ; - 2; 0 ; 12 }
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Dễ thấy:
Trong các phân số, phân số nào có mẫu số là 1 thì phân số đó là số tự nhiên.
Vậy: n = 1
Thử lại:
\(\frac{2}{n}\) + \(\frac{15}{n}\) + \(1\)
= \(\frac{2}{1}\) + \(\frac{15}{1}\) + \(1\)
= \(2\) + \(15\) + \(1\)
= \(18\)
Chắc chắn n = 1