Cho a, b, c là các số ko âm
CMR:\(a+b+c\ge\frac{a-b}{b+5}+\frac{b-c}{c+5}+\frac{c-a}{a+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c\ge\frac{a-b}{a+5}+\frac{b-c}{b+5}+\frac{c-a}{c+5}\)
\(\Leftrightarrow\left(a-\frac{a}{a+5}+\frac{a}{c+5}\right)+\left(b-\frac{b}{b+5}+\frac{b}{a+5}\right)+\left(c-\frac{c}{c+5}+\frac{c}{b+5}\right)\ge0\)
\(\Leftrightarrow a\left(\frac{ac+6a+4c+25}{\left(a+5\right)\left(c+5\right)}\right)+b\left(\frac{ab+6b+4a+25}{\left(b+5\right)\left(a+5\right)}\right)+c\left(\frac{bc+6c+4b+25}{\left(c+5\right)\left(b+5\right)}\right)\ge0\)
Cái này đúng vì a, b, c không âm
Dấu = xảy ra khi \(a=b=c=0\)
Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:
\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)
\(\Rightarrow\)Ta cần chỉ ra được:
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)
Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)
Cộng theo vế các bất đẳng thức trên ta được:
\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Vậy bất đẳng thức đã được chứng minh.
Áp dụng BĐT Cauchy Shwarz dạng Engel và BĐT AM - GM, ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\)
\(=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\)
\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}\)
\(=a^3+b^3+c^3\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{1}{abc}\left(a^6+b^6+c^6\right)\)
\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
1.
\(\frac{a^5}{b^3}+ab\ge2\sqrt{\frac{a^5}{b^3}.ab}=2.\frac{a^3}{b}\)
Tương tự và cộng lại:
\(\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(ab+bc+ca\right)\)(1)
Lại có: \(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2a^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)\)
\(=ab+bc+ca\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-\left(ab+bc+ca\right)\ge0\)
Vậy từ (1) ta có đpcm.
2.
\(\frac{a^5}{bc}+abc\ge2\sqrt{\frac{a^5}{bc}.abc}=2a^3\)
Tương tự và cộng lại
\(A=\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge2\left(a^3+b^3+c^3\right)-3abc\ge a^3+b^3+c^3+3abc-3abc\)
\(\Rightarrow A\ge a^3+b^3+c^3=VP\)
Áp dụng C-S
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
b) chính là USAMO 2004. Đây là lời giải cung cấp bởi "http://www.artofproblemsolving.com/wiki/index.php/2004_USAMO_Problems/Problem_5"
Ta chứng minh được \(x^5+1\ge x^3+x^2\) suy ra \(x^5-x^2+3\ge x^3+2\).
Ta chỉ cần CM được \(\left(a^3+1+1\right)\left(1+b^3+1\right)\left(1+1+c^3\right)\ge\left(a+b+c\right)^3\)
Nhưng đây chính là BĐT Holder cho 3 bộ số mỗi bộ 3 số.